已知三角形的三邊長分別為5,7,8,則該三角形最大角與最小角之和為
 
考點:余弦定理
專題:解三角形
分析:設(shè)7所對的角為α,利用余弦定理求出cosα的值,確定出α的度數(shù),即可確定出該三角形最大角與最小角之和.
解答: 解:∵三角形的三邊長分別為5,7,8,且7所對的角為α,
∴cosα=
52+82-72
2×5×8
=
1
2

∴α=60°,
則該三角形最大角與最小角之和為120°.
故答案為:120°
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(a1,a2),
b
=(b1,b2),定義一運算:
a
?
b
=(a1,a2)?(b1,b2)=(a1b1,a2b2),
已知
m
=(
1
2
,2),
n
=(x1,sinx1).點Q在y=f(x)的圖象上運動,且滿足
OQ
=
m
?
n
(其中O為坐標(biāo)原點),則y=f(x)的最小正周期的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)有兩個頂點在直線x+
4
3
y=4上,則此橢圓的焦點坐標(biāo)是( 。
A、(±5,0)
B、(0,±5)
C、(±
7
,0)
D、(0,±
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②設(shè)p、q是簡單命題,若“p∨q”為假命題,則“?p∧?q”為真命題;
③若p是q的充分不必要條件,則?p是?q的必要不充分條件;
④把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點向右平移
π
8
個單位即可得到函數(shù)y=sin(-2x+
π
4
)
(x∈R)的圖象.其中所有正確說法的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|x2<4},  Q={x|
x
<4}
,則P∩Q=(  )
A、{x|x<2}B、{x|0≤x<2}
C、PD、Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,k),
b
=(2,2),且
a
+
b
a
共線,那么k的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是( 。
A、y=2|x|
B、y=lg(
x2+1
-x)
C、y=2x-2-x
D、
3
5
+
4
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:lg5(lg8+lg1000)+(lg2
3
2+lg
1
6
+lg0.006=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=-2x,x∈[2,3]},B={x|x2+3x-a2-3a>0}.
(1)當(dāng)a=4時,求A∩B;
(2)若命題“x∈A”是命題“x∈B”的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案