【題目】己知函數(shù)的定義域是,對任意的,有.當(dāng)時,.給出下列四個關(guān)于函數(shù)的命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點為,;
④當(dāng)算時,函數(shù)的圖象與函數(shù)的圖象有且只有4個公共點.
其中,真命題的個數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
由周期函數(shù)的定義得到②正確;,可以得到函數(shù)不是奇函數(shù),故①錯誤;,又是周期為2的函數(shù),可得③正確;求出的根即可判斷④錯誤,從而得解.
∵對任意的,有,∴對任意的,,
∴是周期為2的函數(shù),
∴,
又∵當(dāng)時,,∴,∴函數(shù)不是奇函數(shù),故①錯誤,②正確.
當(dāng)時,,∴,又∵是周期為2的函數(shù),∴函數(shù)的全部零點為,,故③正確.
∵當(dāng)時,,令,解得(舍)或;
當(dāng)時,,令,則,解得或(舍);
當(dāng)時,,令,則,解得或(舍),
∴共有3個公共點,故④錯誤.
因此真命題的個數(shù)為2個.
故選:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)關(guān)于的不等式的解集為,求的值;
(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)與的交點為,當(dāng)變化時, 的軌跡為曲線.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點,求點到的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與,軸的交點分別為,,若點在曲線位于第一象限的圖象上運動,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中e是自然對數(shù)的底數(shù),a,)在點處的切線方程是.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若在上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com