【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“校”、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機(jī)模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),分別用,,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):

由此可以估計,恰好第三次就停止摸球的概率為( )

A. B. C. D.

【答案】B

【解析】

隨機(jī)模擬產(chǎn)生了18組隨機(jī)數(shù),其中第三次就停止摸球的隨機(jī)數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.

隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

343 432 341 342 234 142 243 331 112

342 241 244 431 233 214 344 142 134

其中第三次就停止摸球的隨機(jī)數(shù)有:142,112,241,142,共4個,

由此可以估計,恰好第三次就停止摸球的概率為p

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCDADCD,ADBC,PA=AD=CD=2,BC=3EPD的中點(diǎn),點(diǎn)FPC上,且

(Ⅰ)求證:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)設(shè)點(diǎn)GPB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線D的極坐標(biāo)方程為.

1)寫出曲線C的極坐標(biāo)方程以及曲線D的直角坐標(biāo)方程;

2)若過點(diǎn)(極坐標(biāo))且傾斜角為的直線l與曲線C交于M,N兩點(diǎn),弦MN的中點(diǎn)為P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)的定義域是,對任意的,有.當(dāng)時,.給出下列四個關(guān)于函數(shù)的命題:

①函數(shù)是奇函數(shù);

②函數(shù)是周期函數(shù);

③函數(shù)的全部零點(diǎn)為,

④當(dāng)算時,函數(shù)的圖象與函數(shù)的圖象有且只有4個公共點(diǎn).

其中,真命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,在平行四邊形中,,Q上的點(diǎn),過的平面分別交,于點(diǎn)EF,且平面.

1)證明:;

2)若,,Q的中點(diǎn),與平面所成角的正弦值為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象相鄰的最高點(diǎn)之間的距離為,將函數(shù)的圖象向左平移個單位長度后得到函數(shù)的圖象,且為奇函數(shù),則(

A.的圖象關(guān)于點(diǎn)對稱B.的圖象關(guān)于點(diǎn)對稱

C.上單調(diào)遞增D.上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,角,的對邊分別為,.

(1)求角的大;

(2)在銳角三角形中,角,,的對邊分別為,,,若,,,求三角形的內(nèi)角平分線的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年以來精準(zhǔn)扶貧政策的落實,使我國扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;

(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

(的值保留到小數(shù)點(diǎn)后三位)

查看答案和解析>>

同步練習(xí)冊答案