【題目】《福建省高考改革試點方案》規(guī)定:從2018年秋季高中入學的新生開始,不分文理科;2021年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成,將每門選考科目的考生原始成績從高到低劃分為A、B+、BC+、C、D+、D、E8個等級,參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%7%、18%22%、22%18%、7%3%,選考科目成績計入考生總成績時,將AE等級內(nèi)的考生原始成績,依照等比例轉換法則,分別轉換到[91100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50][3140]、[2130]八個分數(shù)區(qū)間,得到考生的等級成績,某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六門選考科目進行測試,其中化學考試原始成績 基本服從正態(tài)分布

(1)求化學原始成績在區(qū)間(57,96)的人數(shù);

(2)以各等級人數(shù)所占比例作為各分數(shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間[71,90]的人數(shù),求事件的概率

(附:若隨機變量,,

【答案】(1)1636人(2)

【解析】

(1),結合正態(tài)分布的性質,可求出概率,然后由總人數(shù)為2000,可求出化學原始成績在的人數(shù);(2)結合獨立重復試驗概率公式可求出概率.

解:(1)因為化學原始成績,

所以

所以化學原始成績在的人數(shù)為(人).

(2)因為以各等級人數(shù)所占比例作為各分數(shù)區(qū)間發(fā)生的概率,

且等級成績在區(qū)間的人數(shù)所占比例分別為、,

則隨機抽取1人,其等級成績在區(qū)間內(nèi)的概率為

所以從全省考生中隨機抽取3人,則的所有可能取值為0,1,2,3,

,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某心理學研究小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其注意力指數(shù)p與聽課時間t之間的關系滿足如圖所示的曲線.當t(0,14]時,曲線是二次函數(shù)圖象的一部分,當t[14,40]時,曲線是函數(shù))圖象的一部分.根據(jù)專家研究,當注意力指數(shù)p大于等于80時聽課效果最佳.

(1)試求的函數(shù)關系式;

(2)一道數(shù)學難題,講解需要22分鐘,問老師能否經(jīng)過合理安排在學生聽課效果最佳時講完?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為,且對任意,有,且當時,

(Ⅰ)證明是奇函數(shù);

(Ⅱ)證明上是減函數(shù);

(III)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機抽取人為優(yōu)秀的概率為.

I)請完成列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計

甲班

乙班

合計

()根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過的前提下認為成績與班級有關系?

參考公式和臨界值表:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),在以為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線交于,兩點,點的坐標為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上函數(shù)的圖象關于圖象上點(1,0)對稱,f(x)對任意的實數(shù)x都有f(3)=0,則函數(shù)y=f(x)在區(qū)間上的零點個數(shù)最少有(

A.2020B.1768C.1515D.1514

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習冊答案