考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專(zhuān)題:直線與圓
分析:(1)由l1∥l2可得(a-1)a-2×1=0,解方程驗(yàn)證可得;
(2)易得直線的方程,由點(diǎn)到直線的距離公式可得圓心到直線的距離d,由圓的弦長(zhǎng)公式可得.
解答: 解:(1)∵l1∥l2,∴(a-1)a-2×1=0,解得a=2或-1
經(jīng)驗(yàn)證,均符合題意,∴a=2或-1;
(2)直線l:y=x即x-y=0,則圓心到直線的距離為:d=
|-2|
2
=
2

可得弦長(zhǎng)|AB|=2
r2-d2
=2
2
點(diǎn)評(píng):本題考查直線的一般式方程與直線的平行關(guān)系,涉及圓的弦長(zhǎng),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有
 

①若函數(shù)y=f(x)在區(qū)間[1,6]上為增函數(shù),則f(x)在區(qū)間[2,5]上也為增函數(shù);
②函數(shù)y=kx+b(k,b為常數(shù))是定義域上的單調(diào)函數(shù);
③若函數(shù)y=f(x)在區(qū)間[1,3]和(3,6]上均為增函數(shù),則f(x)在區(qū)間[1,6]上也為增函數(shù);
④若定義在R上的函數(shù)y=f(x)滿足f(3)>f(2)且f(2)>f(1),則f(x)為R上的增函數(shù);
⑤若定義在區(qū)間[a,b]上的函數(shù)y=f(x)為單調(diào)增函數(shù),則當(dāng)x=b時(shí)f(x)有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x+1),當(dāng)點(diǎn)(x,y)在f(x)的圖象上時(shí),(
x
3
,
y
2
)在y=g(x)圖象上,求F(x)=g(x)-f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2
2x2-x+1
的值域?yàn)?div id="xsyt2p2" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四種說(shuō)法:
①函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=logaax(a>0,且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
與y=
(1+2x)2
x•2x
均是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在(0,+∞)上都是增函數(shù).
其中正確說(shuō)法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖算法的程序,畫(huà)出其相應(yīng)的流程圖,并指明該算法的目的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
16
25
1
3
+16
3
4
+
1
4
1
2
;
(2)0.064-
1
3
+160.75+0.25
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果關(guān)于x的不等式|x+1|+|x+2|<k的解集不是空集,則實(shí)數(shù)k的取值范圍是( 。
A、[2,+∞]
B、(1,+∞)
C、(-∞,1)
D、(3,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x2
4
+y2=1,F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn),P為橢圓上一點(diǎn),則∠F1PF2的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案