【題目】已知數(shù)f(x)=﹣x3﹣6x2﹣9x+3.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值.
【答案】(1)單調(diào)遞減區(qū)間為(﹣∞,﹣3),(﹣1,+∞),單調(diào)遞增區(qū)間為(﹣3,﹣1);(2)f(x)極小值=3,f(x)極大值=7
【解析】
(1)由已知得,由此利用導(dǎo)數(shù)性質(zhì)能求出的單調(diào)區(qū)間.
(2)由的單調(diào)區(qū)間,能求出的極值.
(1)∵f(x)=﹣x3﹣6x2﹣9x+3,
∴f′(x)=﹣3x2﹣12x﹣9,
由f′(x)<0,得x<﹣3或x>﹣1;
由f′(x)>0,得﹣3<x<﹣1.
∴f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣3),(﹣1,+∞),單調(diào)遞增區(qū)間為(﹣3,﹣1).
(2)∵f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣3),(﹣1,+∞),單調(diào)遞增區(qū)間為(﹣3,﹣1),
∴f(x)極小值=f(﹣3)=3,f(x)極大值=f(﹣1)=7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中, , ,現(xiàn)將沿折起,使折到的位置且在面的射影恰好在線段上.
(Ⅰ)證明: ;
(Ⅱ)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。
(1)求曲線的方程;
(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點, .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下面四個命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中a為常數(shù).
當(dāng)時,設(shè)函數(shù),判斷函數(shù)在上是增函數(shù)還是減函數(shù),并說明理由;
設(shè)函數(shù),若函數(shù)有且僅有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其右焦點到直線的距離為.
(1)求橢圓的方程;
(2)若過作兩條互相垂直的直線,是與橢圓的兩個交點,是與橢圓的兩個交點,分別是線段的中點,試判斷直線是否過定點?若過定點,求出該定點的坐標(biāo);若不過定點.請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com