已知橢圓的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,過P點向橢圓的長軸做垂線,垂足為Q求線段PQ的中點的軌跡方程;
(1)由已知得橢圓的半長軸=2,半焦距c=,則半短軸b="1.     "
又橢圓的焦點在x軸上, ∴橢圓的標準方程為
(2)設線段PQ的中點為M(x,y) ,點P的坐標是(x0,y0),
那么:,即
由點P在橢圓上,得,
∴線段PQ中點M的軌跡方程是.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示, 底面直徑為的圓柱被與底面成的平面所截,其截口是一個橢圓,則這個橢圓的離心率為               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中有一直角梯形的中點為,,,,,以為焦點的橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)若點,問是否存在直線與橢圓交于兩點且,若存在,求出直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的方程為:,其焦點在軸上,離心率.
(1)求該橢圓的標準方程;
(2)設動點滿足,其中M,N是橢圓上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點,使得為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過橢圓的一個焦點和一個頂點,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如題21圖,已知離心率為的橢圓過點M(2,1),O為坐標原點,平行于OM的直線交橢圓C于不同的兩點A、B。
(1)求面積的最大值;
(2)證明:直線MA、MB與x軸圍成一個等腰三角形。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標為【   】
A.(-3,0)B.
C.,D.,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知橢圓的焦點坐標為,長軸等于焦距的2倍.
(1)求橢圓的方程;
(2)矩形的邊軸上,點、落在橢圓上,求矩形繞軸旋轉一周后所得圓柱體側面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中心為坐標原點,焦點位于x軸上,分別為右頂點和上頂點,是左焦點;當時,此類橢圓稱為“黃金橢圓”,其離心率為.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率為              .

查看答案和解析>>

同步練習冊答案