(1)奇函數(shù)y=f(x)是定義在[-1,1]上的減函數(shù),且f(1-a)+f(1-a2)>0,求a的取值范圍.
(2)若f(x)是定義在實數(shù)集R上的偶函數(shù),且在區(qū)間(-∞,0)上是增函數(shù),又f(2a-1)>f(3-a),求a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:遼寧省寬甸第二中學(xué)2011屆高三第一次月考試?yán)砜茢?shù)學(xué)試題 題型:013
對任意的實數(shù)a,b,記max{a,b}=.若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=1時有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x≥0)與函數(shù)y=g(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是
y=F(x)為奇函數(shù)
y=F(x)有極大值F(1)且有極小值F(-1)
y=F(x)的最小值為-2且最大值為2
y=F(x)在(-3,0)上不是單調(diào)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知奇函數(shù)y=f(x)在區(qū)間(-∞,0]上的解析式為f(x)=x2+x,則切點(diǎn)橫坐標(biāo)為1的切線方程是 ( )
A.x+y+1=0 B.x+y-1=0
C.3x-y-1=0 D.3x-y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林公主嶺實驗中學(xué)高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知:函數(shù)y=f (x)的定義域為R,且對于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當(dāng)x>0時,f (x)<0恒成立.
證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
(2)函數(shù)y=f (x)是奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
對任意的實數(shù)a,b,記max{a,b}=若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=1時有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x>0)與函數(shù)y=g(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是
A.y=F(x)為奇函數(shù)
B.y=F(x)有極大值F(1)
且有極小值F(-1)
C.y=F(x)的最小值為-2且最大值為2
D.y=F(x)在(-3,0)上不是單調(diào)函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com