【題目】若雙曲線的實軸長為6,焦距為10,右焦點為,則下列結(jié)論正確的是( )
A.的漸近線上的點到距離的最小值為4B.的離心率為
C.上的點到距離的最小值為2D.過的最短的弦長為
科目:高中數(shù)學 來源: 題型:
【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個洞(或數(shù)字),其相對兩面之數(shù)字和必為七.顯然,擲一次六面骰,只能產(chǎn)生六個數(shù)之一(正上面).現(xiàn)欲要求你設(shè)計一個“十進制骰”,使其擲一次能產(chǎn)生0~9這十個數(shù)之一,而且每個數(shù)字產(chǎn)生的可能性一樣.請問:你能設(shè)計出這樣的骰子嗎?若能,請寫出你的設(shè)計方案;若不能,寫出理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線與圓相交于,兩點,且點的橫坐標為.是拋物線的焦點,過焦點的直線與拋物線相交于不同的兩點,.
(1)求拋物線的方程.
(2)過點,作拋物線的切線,,是,的交點,求證:點在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數(shù)為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,,的斜率分別為,,,則;
④過焦點F作y軸的垂線與直線,分別交于點M,N,則以為直徑的圓恒過定點.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了貫徹落實黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡平臺等多種方式實施線上教育教學工作.某教育機構(gòu)為了了解人們對其數(shù)學網(wǎng)課授課方式的滿意度,從經(jīng)濟不發(fā)達的A城市和經(jīng)濟發(fā)達的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:
若評分不低于80分,則認為該用戶對此教育機構(gòu)授課方式“認可”,否則認為該用戶對此教育機構(gòu)授課方式“不認可”.
(Ⅰ)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認為城市經(jīng)濟狀況與該市的用戶認可該教育機構(gòu)授課方式有關(guān)?
認可 | 不認可 | 合計 | |
A城市 | |||
B城市 | |||
合計 |
(Ⅱ)在樣本A,B兩個城市對此教育機構(gòu)授課方式“認可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學競賽,求A城市中至少有1人參加的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅強領(lǐng)導下,全國人民團結(jié)一心,眾志成城,共同抗擊疫情.某中學寒假開學后,為了普及傳染病知識,增強學生的防范意識,提高自身保護能力,校委會在全校學生范圍內(nèi),組織了一次傳染病及個人衛(wèi)生相關(guān)知識有獎競賽(滿分100分),競賽獎勵規(guī)則如下,得分在內(nèi)的學生獲三等獎,得分在內(nèi)的學生獲二等獎,得分在內(nèi)的學生獲一等獎,其他學生不得獎.教務處為了解學生對相關(guān)知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖.
(1)現(xiàn)從該樣本中隨機抽取兩名學生的競賽成績,求這兩名學生中恰有一名學生獲獎的概率;
(2)若該校所有參賽學生的成績近似服從正態(tài)分布,其中為樣本平均數(shù)的估計值,利用所得正態(tài)分布模型解決以下問題:
(i)若該校共有10000名學生參加了競賽,試估計參賽學生中成績超過79分的學生數(shù)(結(jié)果四舍五入到整數(shù));
(ii)若從所有參賽學生中(參賽學生數(shù)大于10000)隨機抽取3名學生進行座談,設(shè)其中競賽成績在64分以上的學生數(shù)為,求隨機變量的分布列和均值.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.
(1)已知,證明:平面平面;
(2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國剪紙是我國廣大勞動人民在生產(chǎn)與生活實踐中創(chuàng)造出來的一種平面剪刻藝術(shù).民間剪紙藝術(shù)是我國優(yōu)秀的非物質(zhì)文化遺產(chǎn)之一,在千百年的發(fā)展過程中,積淀了豐厚的文化歷史,取得了卓越的藝術(shù)成就.2020年3月發(fā)行的郵票《中國剪紙(二)》共4枚,第一枚郵票《三娘教子》(如圖1)出自“孟母教子”的故事,講述了母親通過斷織等行為教育孩子努力上進,懂得感恩.圖2是某剪紙藝術(shù)家根據(jù)第一枚郵票用一張半徑為4個單位的圓形紙片裁剪而成的《三娘教子》剪紙.為了測算圖2中有關(guān)部分的面積,在圓形區(qū)域內(nèi)隨機投擲400個點,其中落入圖案上的點有225個,據(jù)此可估計剪去部分紙片的面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com