已知命題:“若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列bn=
na1a2an
,n∈N*也是等比數(shù)列,類比這一性質(zhì),等差數(shù)列也有類似性質(zhì):“若數(shù)列{an}是等差數(shù)列,則數(shù)列bn=
 
也是等差數(shù)列.
考點(diǎn):類比推理
專題:規(guī)律型,推理和證明
分析:等差數(shù)列與等比數(shù)列有很多地方相似,因此可以類比等比數(shù)列的性質(zhì)猜想等差數(shù)列的性質(zhì),因此幾何平均數(shù)與算術(shù)平均數(shù)正好與等比數(shù)列的二級(jí)運(yùn)算及等差數(shù)列的一級(jí)運(yùn)算可以類比,因此我們可以大膽猜想,數(shù)列bn=
a1+a2+…+an
n
是等差數(shù)列.再根據(jù)等差數(shù)列的定義對(duì)猜想進(jìn)行論證.
解答: 解:類比等比數(shù)列的性質(zhì),可以得到等差數(shù)列的一個(gè)性質(zhì)是:
若數(shù)列{an}是等差數(shù)列,則數(shù)列bn=
a1+a2+…+an
n
是等差數(shù)列.
故答案為:
a1+a2+…+an
n
點(diǎn)評(píng):解答的關(guān)鍵是熟悉類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=
a
OB
=
b
,
OC
=
c
,|
a
|=2,|
b
|=3,
a
b
c
=
a
+t
b
(t∈R),如圖.
(1)若|
OC
|=2|
AB
|,求實(shí)數(shù)t的值;
(2)求
CA
CB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(4,2),
b
=(x,3),且向量
a
b
,則實(shí)數(shù)x為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將一個(gè)各面都涂了油漆的正方體,切割成125個(gè)同樣大小的小正方體.經(jīng)過攪拌后,從中隨機(jī)取出一個(gè)小正方體,則它涂了油漆的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四名優(yōu)等生保送到三所學(xué)校去,每所學(xué)校至少得一名,則不同的保送方案的總數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二進(jìn)制數(shù)定義為“逢二進(jìn)一”,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制形式,是1×23+1×22+0×21+1×20=13,即(1101)2轉(zhuǎn)換成十進(jìn)制數(shù)是13,那么類似可定義k進(jìn)制數(shù)為“逢k進(jìn)一”,則8進(jìn)制數(shù)(102)8轉(zhuǎn)換成十進(jìn)制數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(m-3,m+3),
b
=(2m+1,-m+4),且1≤m≤5,則
a
b
的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(?x-
π
6
)(0<?<3)圖象的一條對(duì)稱軸方程為x=
π
3
,若x∈[0,
π
2
],則f(x)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={-2,0,1},N={1,2,3,4,5},映射f:M→N使對(duì)任意的x∈M,都有x+f(x)+xf(x)是奇數(shù),則這樣的映射f的個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案