【題目】設拋物線的焦點為,其準線與軸的交點為,過點作斜率為的直線交拋物線于兩點,若,則的值為( )

A. B. C. D.

【答案】A

【解析】

聯(lián)立方程,借助韋達定理即可建立關于k的方程,解之即可.

方法一:(韋達定理消去)拋物線的焦點為,準線,設,,則,,由,即有①,聯(lián)立與直線的方程得,則有②,③.由①、②得,代入②中得,解得,故選.

方法二:(韋達定理消去)設拋物線的準線,分別過,,由,則有.設、從而有.聯(lián)立與直線的方程得,則有①,②,由則有③,④,消去,解得,故選A.

方法三:(幾何法)設拋物線,分別過,由,則有,則的中點,設、,從而有.

的中點,則有是原點),而,則,故點在線段的垂直平分線上,則,從而,則,,故,

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品AB,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調查,有關數(shù)據(jù)如表:


產(chǎn)品A()

產(chǎn)品B()


研制成本與塔載
費用之和(萬元/)

20

30

計劃最大資
金額300萬元

產(chǎn)品重量(千克/)

10

5

最大搭載
重量110千克

預計收益(萬元/)

80

60


試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知可以表示為一個奇函數(shù)gx)與一個偶函數(shù)hx)之和,若不等式對于恒成立,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調性;

2)設的導函數(shù)為,若有兩個不相同的零點

求實數(shù)的取值范圍;

證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,1213553等.顯然2位“回文數(shù)”共9個:11,22,33,…,99.現(xiàn)從9個不同2位“回文數(shù)”中任取1個乘以4,其結果記為X;從9個不同2位“回文數(shù)”中任取2個相加,其結果記為Y

1)求X為“回文數(shù)”的概率;

2)設隨機變量表示X,Y兩數(shù)中“回文數(shù)”的個數(shù),求的概率分布和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有6人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,主辦方制作了一款電腦軟件:按下電腦鍵盤“”鍵則會出現(xiàn)模擬拋兩枚質地均勻的骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個點數(shù),并在屏幕的下方計算出的值.主辦方現(xiàn)規(guī)定:每個人去按“”鍵,當顯示出來的小于時則參加甲游戲,否則參加乙游戲.

(1)求這6個人中恰有2人參加甲游戲的概率;

(2)用、分別表示這6個人中去參加甲,乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右頂點,離心率為為坐標原點.

)求橢圓的方程;

)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m,C位于點O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當OM多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓中心在坐標原點,是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.

)若,求的值;

)求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案