【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m,C位于點O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當(dāng)OM多長時,圓形保護(hù)區(qū)的面積最大?

【答案】(1) 150 m (2) |OM|=10 m

【解析】試題分析:本題是應(yīng)用題,我們可用解析法來解決,為此以為原點,以向東,向北為坐標(biāo)軸建立直角坐標(biāo)系.1點坐標(biāo)炎,因此要求的長,就要求得點坐標(biāo),已知說明直線斜率為,這樣直線方程可立即寫出,又,故斜率也能得出,這樣方程已知,兩條直線的交點的坐標(biāo)隨之而得;(2)實質(zhì)就是圓半徑最大,即線段上哪個點到直線的距離最大,為此設(shè),由,圓半徑是圓心到直線的距離,而求它的最大值,要考慮條件古橋兩端到該圓上任一點的距離均不少于80,列出不等式組,可求得的范圍,進(jìn)而求得最大值.當(dāng)然本題如果用解三角形的知識也可以解決.

試題解析:

1)如圖,以軸建立直角坐標(biāo)系,則, ,由題意,直線方程為.又,故直線方程為,由,解得,即,所以

2)設(shè),即 ,由(1)直線的一般方程為,圓的半徑為,由題意要求,由于,因此 ,,所以當(dāng)時, 取得最大值,此時圓面積最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點處的切線的斜率;

(Ⅱ)判斷方程的導(dǎo)數(shù)在區(qū)間內(nèi)的根的個數(shù),說明理由

(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

對任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內(nèi),M,N分別為ABDF的中點.

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;

(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的焦點在x軸上,A是E的左頂點,斜率為k(k0)的直線交E于A,M兩點,點N在E上,MANA

(1)當(dāng)t=4,|AM|=|AN|時,求AMN的面積;

(2)當(dāng)2|AM|=|AN|時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)求的單調(diào)區(qū)間.

)證明:當(dāng)時,方程在區(qū)間上只有一個零點.

)設(shè),其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點,FB1C1的中點.

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結(jié)論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

同步練習(xí)冊答案