已知f(x)=x3-ax+b-1是定義在R上的奇函數(shù),且在x=
3
3
時取最得極值,則a+b的值為( 。
分析:通過函數(shù)f(x)是奇函數(shù)先求出b,在利用函數(shù)f(x)在x=
3
3
時取得極值可得f′(
3
3
)=0求得c,則可求得a+b的值.
解答:解:f(x)=x3-ax+b-1是定義在R上的奇函數(shù),
∴f(-x)=-f(x),化簡計算得b=1.
∵函數(shù)f(x)在x=
3
3
時取得極值,∴f′(
3
3
)=0.
又由f′(x)=3x2-a,
∴f′(
3
3
)=3×(
3
3
)2
-a=0,則a=1.
故a+b=2
故答案為 D
點評:本題考查了待定系數(shù)法求解析式,利用導(dǎo)數(shù)研究函數(shù)的極值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(
13
,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當(dāng)a=-2時,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標(biāo)是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+3x2+a(a為常數(shù)) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習(xí)冊答案