已知f(x)=x3+x-2在點(diǎn)P處的切線(xiàn)與直線(xiàn)y=4x-1平行,則切點(diǎn)P的坐標(biāo)是
(1,0)或(-1,-4)
(1,0)或(-1,-4)
分析:利用切線(xiàn)與直線(xiàn)y=4x-1平行,得到切線(xiàn)斜率為4,然后利用導(dǎo)數(shù)的幾何意義求切點(diǎn)坐標(biāo).
解答:解:因?yàn)閒(x)=x3+x-2在點(diǎn)P處的切線(xiàn)與直線(xiàn)y=4x-1平行,所以切線(xiàn)斜率k=4.
函數(shù)f(x)的導(dǎo)數(shù)f'(x)=3x2+1,由f'(x)=3x2+1=4,得x2=1,解得x=1或x=-1,
所以f(1)=0,f(-1)=-4,
即切點(diǎn)坐標(biāo)為(1,0)或(-1,-4).
故答案為:(1,0)或(-1,-4).
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義,利用切線(xiàn)和直線(xiàn)平行,得到切線(xiàn)斜率與直線(xiàn)的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(
13
,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線(xiàn)y=f(x)在x=-1處的切線(xiàn)與直線(xiàn)2x-y-1=0平行,求a的值;
(2)當(dāng)a=-2時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+3x2+a(a為常數(shù)) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案