【題目】某中學舉行了一次“環(huán)保知識競賽”, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
| 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0 16 |
第2組 | [60,70) | a | ▓ |
第3組 | [70,80) | 20 | 0 40 |
第4組 | [80,90) | ▓ | 0 08 |
第5組 | [90,100] | 2 | b |
合計 | ▓ | ▓ |
(1)求出的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動
(ⅰ)求所抽取的2名同學中至少有1名同學來自第5組的概率;
(ⅱ)求所抽取的2名同學來自同一組的概率
【答案】(1).(2)(ⅰ).(ⅱ)
【解析】試題分析:(1)首先由第一組或第三組可得樣本容量為50 由此可得,由此得第二組的頻率為,所以.由得;(2)(ⅰ)80分以上即在第四組和第五組 第4組共有4人,記為,第5組 共有2人,記為.從這6名同學中隨機抽取2名同學有, 共15種情況.設“隨機抽取的2名同學中至少有1名同學來自第5組”
有, 共9種情況.由此即可得所求概率 (ⅱ)2名同學來自同一組有共7種情況.由此可得所求概率
試題解析:(1)由題意可知, . (4分)
(2)(ⅰ)由題意可知,第4組共有4人,記為,第5組共有2人,記為.
從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學有,
共15種情況. (6分)
設“隨機抽取的2名同學中至少有1名同學來自第5組”為事件,
有, 共9種情況. (9分)
所以隨機抽取的2名同學中至少有1名同學來自第5組的概率是. (10分)
(ⅱ)設“隨機抽取的2名同學來自同一組”為事件,有共7種情況.
所以隨機抽取的2名同學來自同一組的概率(12分)
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為, ,點在橢圓上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同交點、時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,圓的方程為.
(Ⅰ)寫出直線的普通方程和圓的直角坐標方程;
(Ⅱ)若點的直角坐標為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體ABCD—A1B1C1D1中,
M、N分別是AB1、BC1的中點.
(Ⅰ)求證:直線MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空間中任意放置的棱長為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號)
①正四面體的主視圖面積可能是;
②正四面體的主視圖面積可能是;
③正四面體的主視圖面積可能是;
④正四面體的主視圖面積可能是2
⑤正四面體的主視圖面積可能是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).
(Ⅰ)設函數(shù),試求的伴隨向量;
(Ⅱ)記向量的伴隨函數(shù)為,求當且時的值;
(Ⅲ)由(Ⅰ)中函數(shù)的圖像(縱坐標不變)橫坐標伸長為原來的倍,再把整個圖像向右平移個單位長度得到的圖像。已知 ,問在的圖像上是否存在一點,使得.若存在,求出點坐標;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com