1.復(fù)數(shù)$\frac{2}{1+i}$=1-i.

分析 利用復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算法則直接求解.

解答 解:復(fù)數(shù)$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i.
故答案為:1-i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的運(yùn)算,涉及到復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算法則等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=e-x(x2-ax+a),a≥0..
(I )討論f(x)的單調(diào)性;
(II) ( i )若a=0,證明:當(dāng)x>6 時(shí),f(x)<$\frac{1}{x}$
(ii)若方程f(x)=a有3個(gè)不同的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知實(shí)數(shù)x、y滿(mǎn)足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,則z=x-y的取值范圍是(  )
A.[0,3]B.[-$\frac{17}{5}$,3]C.[-$\frac{17}{5}$,1]D.[-$\frac{17}{5}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知實(shí)數(shù)m>1,實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,若目標(biāo)函數(shù)z=x+my的最大值等于3,則m的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)于函數(shù)f(x)=x2-2x+3(x≥2),若存在x0∈[2,+∞),使f(x0)=m成立,則實(shí)數(shù)m的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.兩個(gè)相關(guān)變量滿(mǎn)足如下關(guān)系:
x23456
y25505664
根據(jù)表格已得回歸方程:$\hat y$=9.4x+9.2,表中有一數(shù)據(jù)模糊不清,請(qǐng)推算該數(shù)據(jù)是( 。
A.37.4B.39C.38.5D.40.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某城市理論預(yù)測(cè)2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示
年份202x(年)01234
人口數(shù) y(十萬(wàn))5781119
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;
(Ⅱ)據(jù)此估計(jì)2025年該城市人口總數(shù).
參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
參考公式:用最小二乘法求線(xiàn)性回歸方程系數(shù)公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{{8\sqrt{2}}}{3}$D.$\frac{{4\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)ft(x)=(x-t)2-t,t∈R,f(x)=$\left\{\begin{array}{l}{{f}_{m}(x),{f}_{m}(x)<{f}_{n}(x)}\\{{f}_{n}(x),{f}_{m}(x)≥{f}_{n}(x)}\end{array}\right.$(m<n),若函數(shù)y=f(x)+x+m-n有四個(gè)零點(diǎn),則m-n的取值范圍是(-∞,-2-$\sqrt{5}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案