如圖,點(diǎn)P在正方體ABCD-A1B1C1D1的面對角線BC1上運(yùn)動,則下列四個(gè)結(jié)論:
①三棱錐A-D1PC的體積不變;
②A1P∥平面ACD1;
③DP⊥BC1
④平面PDB1⊥平面ACD1
其中正確的結(jié)論的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
考點(diǎn):命題的真假判斷與應(yīng)用,棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:對于①,由題意知AD1∥BC1,從而BC1∥平面AD1C,
故BC1上任意一點(diǎn)到平面AD1C的距離均相等,
所以以P為頂點(diǎn),平面AD1C為底面,則三棱錐A-D1PC的體積不變,故①正確;
對于②,連接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,從而由線面平行的定義可得,故②正確;
對于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,
若DP⊥BC1,則BC1⊥平面DCP,
BC1⊥PC,則P為中點(diǎn),與P為動點(diǎn)矛盾,故③錯誤;
對于④,連接DB1,由DB1⊥AC且DB1⊥AD1,
可得DB1⊥面ACD1,從而由面面垂直的判定知,故④正確.
故選:C.
點(diǎn)評:本題考查命題真假的判斷,解題時(shí)要注意三棱錐體積求法中的等體積法、線面平行、垂直的判定,要注意使用轉(zhuǎn)化的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖:長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,E為AB上一點(diǎn),且AE=2EB,F(xiàn)為CC1的中點(diǎn),P為C1D1上動點(diǎn),當(dāng)EF⊥CP時(shí),PC1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+x,g(x)=lnx+x,h(x)=x-
1
4x
的零點(diǎn)依次為a,b,c,則(  )
A、c<b<a
B、a<b<c
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值與最小值之和為a,則a的值為( 。
A、2
B、4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)定義域?yàn)椋?∞,+∞),滿足f(x+1)=2f(x-1),當(dāng)x∈[0,2)時(shí),f(x)=
4-x2-3x,x∈[0,1)
logx,x∈[1,2)
,若x∈[-4,-2)時(shí),f(x)≤
m
4
+
3
4m
恒成立,則實(shí)數(shù)m的取值范圍( 。
A、(-∞,0]∪[1,3)
B、(0,1]∪[3,+∞)
C、(0,1)∪[3,+∞)
D、(0,1]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體交于一點(diǎn)的三條棱上各取一點(diǎn),過這三點(diǎn)作一截面,那么這個(gè)截面是( 。
A、鈍角三角形
B、銳角三角形
C、直角三角形
D、以上三種圖形都可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f定義在正整數(shù)有序?qū)Φ募仙,并滿足f(x,x)=x,f(x,y)=f(y,x),(x+y)f(x,y)=yf(x,x+y),則f(14,52)的值為( 。
A、364B、182
C、91D、無法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠2011年的年產(chǎn)值是100萬元,計(jì)劃以后每年的年產(chǎn)值在上一年的基礎(chǔ)上增加10%,求2021年該廠的年產(chǎn)值是多少萬元?(精確到萬元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明:sinx+siny=2sin
x+y
2
cos
x-y
2

(2)三角形ABC中,a、b、c分別為角A、B、C所對的邊,若a,b,c成等差數(shù)列,求證:tan
A
2
tan
C
2
≥tan2
B
2

查看答案和解析>>

同步練習(xí)冊答案