如圖:長方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,E為AB上一點,且AE=2EB,F(xiàn)為CC1的中點,P為C1D1上動點,當(dāng)EF⊥CP時,PC1=
 
考點:棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:以A為原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PC1=2.
解答: 解:以A為原點,AB為x軸,AD為y軸,AA1為z軸,
建立空間直角坐標(biāo)系,
∵長方體ABCD-A1B1C1D1中,AB=3,
AD=AA1=2,E為AB上一點,且AE=2EB,
F為CC1的中點,P為C1D1上動點,
∴E(2,0,0),F(xiàn)(3,2,1),C(3,2,0),
設(shè)P(a,2,2),
EF
=(1,2,1),
CP
=(a-3,0,2)
,
∵EF⊥CP,
EF
CP
=a-3+2=0,解得a=1,
∴P(1,2,2),∵C1(3,2,2),
PC1
=(2,0,0),∴|
PC1
|=2,
∴PC1=2.
故答案為:2.
點評:本題考查線段長的求法,是基礎(chǔ)題,解題時要注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司有甲乙兩個工作部門,假日去不同景點旅游,總共有m人參加,甲部門平均每人花費120元,乙部門每人花費110元,該公司去旅游的總共花去2250元,問甲乙兩部門各去了多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0且滿足
2
x
+
8
y
=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中,AB=1,CB=2,BB1=3,∠ABC=90°,∠B1BA=∠B1BC=60°,則線段BD1的長度等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱中,已知底面積為s平方米,三個側(cè)面面積分別為m平方米,n平方米,p平方米,則它的體積為
 
立方米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
為非零不共線向量,定義
a
×
b
為一個向量,其大小為|
a
||
b
|sin<
a
,
b
>,方向與
a
b
都垂直,且
a
,
b
,
a
×
b
的方向依次構(gòu)成右手系(即右手拇指,食指分別代表
a
,
b
的方向,中指與拇指、食指的平面垂直且指向掌心代表
a
×
b
的方向),則下列說法中正確結(jié)論的序號有
 

①(
a
×
b
)•
a
=0
②(
a
×
b
)×
c
=
a
×(
b
×
c

③正方體ABCD-A1B1C1D1棱長為1,則(
AB
×
AD
)•
AA1
=1
④三棱錐A-BCD中,|(
AB
×
AC
)•
AD
|的值恰好是他的體積的6倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把邊長為1的正方形ABCD沿對角線折起,使其成為四面體ABCD,則下列命題:
①三棱錐A-BCD體積的最大值為
2
12

②當(dāng)三棱錐體積最大時直線BD和平面ABC所成的角的大小為45°;
③B、D兩點間的距離的取值范圍是(0,
2
);
④當(dāng)二面角D-AC-B的平面角為90°時,異面直線BC與AD所成角為45°;
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={x|x是直平行六面體},N={x|x是長方體},P={x|x是正四棱柱},則下列關(guān)系中正確的是( 。
A、M⊆NB、N⊆P
C、P⊆MD、N∩P=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點P在正方體ABCD-A1B1C1D1的面對角線BC1上運動,則下列四個結(jié)論:
①三棱錐A-D1PC的體積不變;
②A1P∥平面ACD1
③DP⊥BC1;
④平面PDB1⊥平面ACD1
其中正確的結(jié)論的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案