【題目】某商場(chǎng)在五一促銷活動(dòng)中,為了了解消費(fèi)額在5千元以下(含5千元)的顧客的消費(fèi)分布情況,從這些顧客中隨機(jī)抽取了100位顧客的消費(fèi)數(shù)據(jù)(單位:千元),按,,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從兩組顧客中抽取4人進(jìn)行滿意度調(diào)查,再?gòu)倪@4人中隨機(jī)抽取2人作為幸運(yùn)顧客,求所抽取的2位幸運(yùn)顧客都來(lái)自組的概率.

【答案】

【解析】

組抽取1人,記為A;從組抽取3人,分別記為,.列出所有情況,統(tǒng)計(jì)滿足條件的情況,相除得到答案.

根據(jù)題意,組的顧客有人, 組的顧客有.

用分層抽樣的方法從兩組顧客中抽取4人,則從組抽取1人,記為A

組抽取3人,分別記為,.

于是,從這4人中隨機(jī)抽取2人的所有可能結(jié)果為,,,,6.

設(shè)所抽取的2人都來(lái)自組為事件C,所包含的結(jié)果為,,3.

因此,所抽取的2位幸運(yùn)顧客都來(lái)自組的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),試求函數(shù)圖像過(guò)點(diǎn)的切線方程;

(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

(Ⅰ)令,求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),直線的圖像有兩個(gè)交點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與拋物線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線軸相交于點(diǎn),且.

1)求證:;

2)求點(diǎn)的橫坐標(biāo);

3)過(guò)點(diǎn)分別作拋物線的切線,兩條切線交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是棱長(zhǎng)為1的正方體ABCDA1B1C1D1的底面A1B1C1D1上一點(diǎn),則的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在斜三棱柱中,側(cè)面平面,,,,的中點(diǎn).

(1)求證:平面

(2)在側(cè)棱上確定一點(diǎn),使得二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,平面,,,.

(1)求棱錐的體積;

(2)求證:平面平面;

(3)在線段上是否存在一點(diǎn),使平面?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某蔬菜商店買進(jìn)的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)請(qǐng)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格紙中繪制散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留三位小數(shù));(注:

(3)在表格中(的8個(gè)對(duì)應(yīng)點(diǎn)中,任取3個(gè)點(diǎn),記這3個(gè)點(diǎn)在直線的下方的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱中,,側(cè)面底面,的中點(diǎn),,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案