設(shè)定函數(shù) (>0),且方程的兩個(gè)根分別為1,4。
(Ⅰ)當(dāng)=3且曲線過(guò)原點(diǎn)時(shí),求的解析式;
(Ⅱ)若在無(wú)極值點(diǎn),求a的取值范圍。
(Ⅰ);(Ⅱ)。
解析試題分析:由 得
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/4/mv7oa2.png" style="vertical-align:middle;" />的兩個(gè)根分別為1,4,所以 (*)
(Ⅰ)當(dāng)時(shí),又由(*)式得
解得
又因?yàn)榍過(guò)原點(diǎn),所以
故
(Ⅱ)由于a>0,所以“在(-∞,+∞)內(nèi)無(wú)極值點(diǎn)”等價(jià)于“在(-∞,+∞)內(nèi)恒成立”。
由(*)式得。
又
解 得
即的取值范圍
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,待定系數(shù)法。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(II)將函數(shù)問(wèn)題轉(zhuǎn)化成不等式恒成立問(wèn)題,通過(guò)對(duì)方程實(shí)根的討論及研究,確定得到參數(shù)的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,.
(1)若在存在極值,求的取值范圍;
(2)若,問(wèn)是否存在與曲線和都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù);
(1)若在處取極值,求的值;
(2)設(shè)直線和將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個(gè)區(qū)域(不包括邊界),若圖象恰好位于其中一個(gè)區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個(gè)極大值和一個(gè)極小值,且極大值與極小值的積為,求的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若存在實(shí)常數(shù)和,使得函數(shù)和對(duì)其定義域上的任意實(shí)數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com