已知函數(shù)圖象上一點處的切線方程為
(Ⅰ)求的值;(Ⅱ)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù),);
(I)  (Ⅱ)
(Ⅰ),,
,且.解得.  
(Ⅱ),令,
,令,得舍去).
內(nèi),當(dāng)時,, ∴ 是增函數(shù);
當(dāng)時,,  ∴ 是減函數(shù)    
則方程內(nèi)有兩個不等實根的充要條件是. 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:三次函數(shù),在上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)時,

20070328

 
  (1)求函數(shù)f (x)的解析式;  (2)若函數(shù),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)函數(shù)f(x)=lnx-px+1(1)當(dāng)P>0時,若對任意x>0,恒有f(x)≤0,求P的取值范圍(2)證明:   (n∈N,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),若=1處的切線方程為。 (1) 求的解析式及單調(diào)區(qū)間; (2) 若對任意的都有成立,求函數(shù)的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (a∈R).(1)若在[1,e]上是增函數(shù),求a的取值范圍(2)若a=1,a≤x≤e,證明:<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)其中。(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,證明不等式:;
(3)設(shè)的最小值為證明不等式:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)函數(shù),則數(shù)列的前n項和是
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=
π
2
+cosx
,則f′(
π
2
)=( 。
A.-1+
π
2
B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的導(dǎo)數(shù)是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案