【題目】在一次歌手大獎(jiǎng)賽上,七位評委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

【答案】D
【解析】解:去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)為9.4,9.4,9.6,9.4,9.7,
其平均值為 (9.4+9.4+9.6+9.4+9.7)=9.5,
方差為 [(9.4﹣9.5)2+(9.4﹣9.5)2+(9.6﹣9.5)2+(9.4﹣9.5)2+(9.7﹣9.5)2]=0.016,
故選D.
根據(jù)題意,利用平均數(shù)、方差公式直接計(jì)算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)單位有職工80人,其中業(yè)務(wù)人員56人,管理人員8人,服務(wù)人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個(gè)容量為10的樣本,每個(gè)管理人員被抽到的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足3an﹣2Sn﹣1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求f(n)= (n∈N+)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(1)求取出的兩個(gè)球上標(biāo)號(hào)為相同數(shù)字的概率;
(2)求取出的兩個(gè)球上標(biāo)號(hào)之積能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有大型超市200家、中型超市400家、小型超市1400 家.為掌握各類超市的營業(yè)情況,現(xiàn)按分層抽樣方法抽取一個(gè)容量為100的樣本,應(yīng)抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線.

(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;

(2)若函數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,且BC邊上的高為 ,則當(dāng) + 取得最大值時(shí),內(nèi)角A=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案