【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(1)求取出的兩個(gè)球上標(biāo)號為相同數(shù)字的概率;
(2)求取出的兩個(gè)球上標(biāo)號之積能被3整除的概率.
【答案】
(1)解:設(shè)從甲、乙兩個(gè)盒子中各取1個(gè)球,其數(shù)字分別為x、y,
用(x,y)表示抽取結(jié)果,則所有可能的結(jié)果有16種,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16種結(jié)果,每種情況等可能出現(xiàn).
設(shè)“取出的兩個(gè)球上的標(biāo)號相同”為事件A,
則A={(1,1),(2,2),(3,3),(4,4)}.
事件A由4個(gè)基本事件組成,故所求概率 .
答:取出的兩個(gè)球上的標(biāo)號為相同數(shù)字的概率為 .
(2)解:設(shè)“取出的兩個(gè)球上標(biāo)號的數(shù)字之積能被3整除”為事件B,
則B={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)}.
事件B由7個(gè)基本事件組成,故所求概率 .
答:取出的兩個(gè)球上標(biāo)號之積能被3整除的概率為
【解析】設(shè)從甲、乙兩個(gè)盒子中各取1個(gè)球,其數(shù)字分別為x、y,用(x,y)表示抽取結(jié)果,則所有可能的結(jié)果有16種,(1)A={(1,1),(2,2),(3,3),(4,4)},代入古典概率的求解公式可求(2)設(shè)“取出的兩個(gè)球上標(biāo)號的數(shù)字之積能被3整除”為事件B,則B={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)},代入古典概率的求解公式可求
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“丁香”和“小花”是好朋友,她們相約本周末去爬歌樂山,并約定周日早上8:00至8:30之間(假定她們在這一時(shí)間段內(nèi)任一時(shí)刻等可能的到達(dá))在歌樂山健身步道起點(diǎn)處會合,若“丁香”先到,則她最多等待“小花”15分鐘.若“小花”先到,則她最多等待“丁香”10分鐘,若在等待時(shí)間內(nèi)對方到達(dá),則她倆就一起快樂地爬山,否則超過等待時(shí)間后她們均不再等候?qū)Ψ蕉陋?dú)爬山,則“丁香”和“小花”快樂地一起爬歌樂山的概率是(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:末位數(shù)字為9的整數(shù)能被3整除;
(2)p:有的素?cái)?shù)是偶數(shù);
(3)p:至少有一個(gè)實(shí)數(shù)x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,曲線上的任意一點(diǎn)滿足: .
(1)求點(diǎn)的軌跡方程;
(2)過點(diǎn)的直線與曲線交于, 兩點(diǎn),交軸于點(diǎn),設(shè), ,試問是否為定值?如果是定值,請求出這個(gè)定值,如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線l與C相交于A,B兩點(diǎn),若|AB|=8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:不論m取何實(shí)數(shù),方程x2+x-m=0必有實(shí)數(shù)根;
(2)q:存在一個(gè)實(shí)數(shù)x,使得x2+x+1≤0;
(3)r:等圓的面積相等,周長相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)設(shè),若對任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn) 兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果產(chǎn)品的利潤為300元/噸, 產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得最大利潤為( )
A. 14000元 B. 16000元 C. 18000元 D. 20000元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用長14.8 m的鋼條制作一個(gè)長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com