觀察下列排列:
1
2 3 4
3 4 5 6 7
4 5 6 7 8 9 10

則第________行的各數(shù)之和等于20132( 。
A、2014B、2013
C、1007D、1008
考點(diǎn):歸納推理
專題:規(guī)律型,等差數(shù)列與等比數(shù)列
分析:第1行各數(shù)之和是(2×1-1)2,第2行各數(shù)之和是(2×2-1)2,第3行各數(shù)之和是(2×3-1)2,第4行各數(shù)之和是(2×4-1)2,故第n行各數(shù)之和是(2n-1)2,由此能求出結(jié)果.
解答: 解:觀察下列數(shù)的規(guī)律圖:
1
2 3 4
3 4 5 6 7
4 5 6 7 8 9 10

知:第1行各數(shù)之和是1=12=(2×1-1)2
第2行各數(shù)之和是2+3+4=32=(2×2-1)2,
第3行各數(shù)之和是3+4+5+6+7=52=(2×3-1)2,
第4行各數(shù)之和是4+5+6+7+8+9+10=72=(2×4-1)2,
∴第n行各數(shù)之和是(2n-1)2,
由20132=(2n-1)2,解得n=1007.
故選C.
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和公式的求法和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,平面OAB的法向量為
a
=(2,-2,1),已知P(-1,3,2),則P到平面OAB的距離等于(  )
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)投擲硬幣的游戲中,把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線ax-y+3=0與圓(x-1)2+(y-2)2=4相交于A、B兩點(diǎn),且弦AB的長(zhǎng)為2
3
,則a=( 。
A、-1
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某條公共汽車線路收支差額y與乘客量x的圖象(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)是不改變車票價(jià)格,減少支出費(fèi)用;建議(Ⅱ)是不改變支出費(fèi)用,提高車票價(jià)格.下面給出四個(gè)圖象:在這些圖象中(  )
A、①反映了建議(Ⅱ),③反映了建議(Ⅰ)
B、①反映了建議(Ⅰ),③反映了建議(Ⅱ)
C、②反映了建議(Ⅰ),④反映了建議(Ⅱ)
D、④反映了建議(Ⅰ),②反映了建議(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從學(xué)號(hào)為1~60的高一某班60名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測(cè)試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是(  )
A、10,20,30,40,50
B、6,18,30,42,54
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足(2-i)z=4+3i(i為虛數(shù)單位),則|z-i|=(  )
A、
2
B、
3
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)圖象上的任意一點(diǎn)P的坐標(biāo)(x,y)滿足條件x2>y2,則稱函數(shù)f(x)具有性質(zhì)S,那么下列函數(shù)中具有性質(zhì)S的是( 。
A、f(x)=ex-1
B、f(x)=ln(x+1)
C、f(x)=sinx
D、f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn,且Sn=n2+
1
2
n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n,設(shè)cn=
an+
1
2
bn
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案