(本題滿分12分) 如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形
(1)求證:;
(2)設(shè)線段的中點(diǎn)為,在直線 上是否存在一點(diǎn),使得?若存在,請(qǐng)指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;
(3)求二面角正切值的大小。
(1)略
(2)略
(3)二面角正切值為
【解析】解:(Ⅰ)因?yàn)槠矫鍭BEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF. ……………………………………2分
因?yàn)楱SABE為等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因?yàn)椤螦EF=45,
所以∠FEB=90°,即EF⊥BE. …………………3分
因?yàn)锽C平面ABCD, BE平面BCE,
BC∩BE=B
所以 …………………………4分(II)取BE的中點(diǎn)N,連結(jié)CN,MN,則MNPC
∴PMNC為平行四邊形,所以PM∥CN. ………6分
∵CN在平面BCE內(nèi),PM不在平面BCE內(nèi),PM∥平面BCE ………8分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延長(zhǎng)線于G,則FG∥EA.從而FG⊥平面ABCD,
作GH⊥BD于H,連結(jié)FH,則由三垂線定理知BD⊥FH.
∴ ∠FHG為二面角F-BD-A的平面角. …………………10分
∵ FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.
設(shè)AB=1,則AE=1,AF=,則
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角正切值為 ………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com