【題目】某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng)一次.抽獎(jiǎng)方法是:從裝有標(biāo)號(hào)為的個(gè)紅球和標(biāo)號(hào)為的個(gè)白球的箱中,隨機(jī)摸出個(gè)球,若摸出的兩球號(hào)碼相同,可獲一等獎(jiǎng);若兩球顏色不同且號(hào)碼相鄰,可獲二等獎(jiǎng),其余情況獲三等獎(jiǎng).已知某顧客參與抽獎(jiǎng)一次.
(Ⅰ)求該顧客獲一等獎(jiǎng)的概率;
(Ⅱ)求該顧客獲三獲獎(jiǎng)的概率.
【答案】(1)(2)
【解析】試題分析:(1)先根據(jù)枚舉法列舉得基本事件的總數(shù),再?gòu)闹写_定摸出的兩球號(hào)碼相同的結(jié)果數(shù),最后利用古典概型概率公式求概率,(2)從中確定摸出的兩球顏色不同且號(hào)碼相鄰的結(jié)果數(shù),最后利用古典概型概率公式求概率.
試題解析:解:標(biāo)號(hào)為的個(gè)紅球記為,標(biāo)號(hào)為的個(gè)白球記為.
從中隨機(jī)摸出個(gè)球的所有結(jié)果有:
, , , , , , , , , , , , , , ,共15個(gè).這些基本事件的出現(xiàn)是等可能的.
(Ⅰ)摸出的兩球號(hào)碼相同的結(jié)果有: , ,共個(gè).
所以“該顧客獲一等獎(jiǎng)”的概率.
(Ⅱ)摸出的兩球顏色不同且號(hào)碼相鄰的結(jié)果有: ,,,共個(gè).
則“該顧客獲二等獎(jiǎng)”的概率.
所以“該顧客獲三等獎(jiǎng)”的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)廠(chǎng)上年度生產(chǎn)汽車(chē)的投入成本為10萬(wàn)元/輛,出廠(chǎng)價(jià)為12萬(wàn)元/輛,年銷(xiāo)售量為10000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品質(zhì)量,適度增加投入成本.若每輛車(chē)投入成本增加的比例為(),則出廠(chǎng)價(jià)相應(yīng)地提高比例為,同時(shí)預(yù)計(jì)年銷(xiāo)售量增加的比例為,已知年利潤(rùn)=(出廠(chǎng)價(jià)-投入成本)×年銷(xiāo)售量.
(1)寫(xiě)出本年度預(yù)計(jì)的年利潤(rùn)與投入成本增加的比例的關(guān)系式;
(2)為使本年度的年利潤(rùn)比上年度有所增加,則投入成本增加的比應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓交于, 兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,).
(1)若在上單調(diào)遞減,求的取值范圍;
(2)當(dāng)時(shí),判斷關(guān)于的方程的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求的單調(diào)區(qū)間;
(2)求函數(shù)在上的最值;
(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四棱錐的底面為矩形, 底面,且(),, 分別是, 的中點(diǎn).
(1)當(dāng)為何值時(shí),平面平面?并證明你的結(jié)論;
(2)當(dāng)異面直線(xiàn)與所成角的正切值為2時(shí),求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com