【題目】已知函數(shù),.

(1)若,求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值;

(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的取值范圍.

【答案】(1)在上單調(diào)遞減, 在上單調(diào)遞增; (2)見(jiàn)解析;(3).

【解析】

1)分段結(jié)合二次函數(shù)圖形討論函數(shù)的單調(diào)性即可;(2)分,,四段討論函數(shù)的單調(diào)性,求出最值;(4)令,分別解出,(舍),得,然后化簡(jiǎn)求出取值范圍即可.

(1)

當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸是,開(kāi)口向上,

上單調(diào)遞減, 在上單調(diào)遞增.

當(dāng)時(shí),函數(shù)上單調(diào)遞增.

綜上: 上單調(diào)遞減, 在上單調(diào)遞增.

(2)①當(dāng)時(shí),

的對(duì)稱(chēng)軸是

上遞減,在上遞增

最小值,最大值;

②當(dāng)時(shí)的對(duì)稱(chēng)軸是

,

的最小值為,最大值,

③當(dāng)時(shí),

的最小值為,最大值,

④ 當(dāng)時(shí),的對(duì)稱(chēng)軸是

的最小值,最大值,

綜上:①當(dāng)時(shí),的最小值,最大值;

②當(dāng)時(shí),的最小值為,最大值;

③當(dāng)時(shí),的最小值為,最大值

④當(dāng)時(shí),的最小值,最大值

(3)

當(dāng)時(shí),令,可得

,,

因?yàn)?/span>,所以,(舍去)

所以,

上是減函數(shù),所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng)一次.抽獎(jiǎng)方法是:從裝有標(biāo)號(hào)為個(gè)紅球和標(biāo)號(hào)為個(gè)白球的箱中,隨機(jī)摸出個(gè)球,若摸出的兩球號(hào)碼相同,可獲一等獎(jiǎng);若兩球顏色不同且號(hào)碼相鄰,可獲二等獎(jiǎng),其余情況獲三等獎(jiǎng).已知某顧客參與抽獎(jiǎng)一次.

Ⅰ)求該顧客獲一等獎(jiǎng)的概率;

Ⅱ)求該顧客獲三獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠擬建一座平面圖為矩形,面積為,高度一定的三段污水處理池(如圖),由于受地形限制,其長(zhǎng)、寬都不超過(guò),如果池的外壁的建造費(fèi)單價(jià)為,池中兩道隔壁墻(與寬邊平行)的建造費(fèi)單價(jià)為,池底的建造費(fèi)單價(jià)為.設(shè)水池的長(zhǎng)為,總造價(jià)為.

1)求的表達(dá)式;

2)水池的長(zhǎng)與寬各是多少時(shí),總造價(jià)最低,并求出這個(gè)最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2S3=8.

(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱中,已知,分別為,的中點(diǎn),點(diǎn)上,且求證:

(1)直線平面

(2)直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·全國(guó)Ⅱ卷)如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCADBADABC90°,EPD的中點(diǎn).

(1)證明:直線CE∥平面PAB;

(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線l1l2是異面直線,l1α,l2βα∩β=l,則下列命題正確的是( 。

A. l至少與,中的一條相交B. l,都相交

C. l至多與中的一條相交D. l,都不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

同步練習(xí)冊(cè)答案