已知一條曲線在x軸的上方,它上面的每一點(diǎn)到點(diǎn)A(0,2)的距離減去它到x軸的距離的差都是2,求這條曲線的方程.
設(shè)點(diǎn)M(x,y)是曲線上任意一點(diǎn),MB⊥x軸,垂足是B,那么點(diǎn)M屬于集合P={M||MA|-|MB|=2}.
由距離公式,點(diǎn)M適合的條件可表示為:
x2+(y-2)2
-y=2

將①式移項(xiàng)后再兩邊平方,得x2+(y-2)2=(y+2)2,
化簡得:y=
1
8
x2

因?yàn)榍在x軸的上方,所以y>0,雖然原點(diǎn)O的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程是y=
1
8
x2
(x≠0),它的圖形是關(guān)于y軸對稱的拋物線,但不包括拋物線的頂點(diǎn),如圖所示.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程x2+y2+2x-4=0表示的曲線經(jīng)過點(diǎn)P(m,1),那么m的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是-
1
2

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程,并求出曲線C的離心率的值;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy內(nèi)有兩定點(diǎn)M(-1,0),N(1,0),點(diǎn)P滿足|
PM
|+|
PN
|=4
,則動(dòng)點(diǎn)P的軌跡方程是______,|
PM
|
的最大值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定點(diǎn)N(3,0)與以點(diǎn)M為圓心的圓M的方程為(x+3)2+y2=16,動(dòng)點(diǎn)P在圓M上運(yùn)動(dòng),線段PN的垂直平分線交直線MP于Q點(diǎn),則動(dòng)點(diǎn)Q的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(0,
3
)
和圓O1x2+(y+
3
)2=16
,點(diǎn)M在圓O1上運(yùn)動(dòng),點(diǎn)P在半徑O1M上,且|PM|=|PA|,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)若直線l:y=kx+m與曲線C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知垂直豎在水平地面上相距20米的兩根旗桿的高分別為10米和15米,地面上的動(dòng)點(diǎn)P到兩旗桿頂點(diǎn)的仰角相等,則點(diǎn)P的軌跡是(  )
A.橢圓B.圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于任意實(shí)數(shù),直線與圓的位置關(guān)系是_________

查看答案和解析>>

同步練習(xí)冊答案