.如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點(diǎn)。
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)設(shè)SD = 2CD,求二面角A-EF-D的大;
 
(Ⅰ)同解析(Ⅱ)二面角的大小為
(Ⅰ)如圖,建立空間直角坐標(biāo)系
設(shè),則,
G

的中點(diǎn),則
平面平面,
所以平面
(Ⅱ)設(shè),則
中點(diǎn)

,
所以向量的夾角等于二面角的平面角.

所以二面角的大小為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知長(zhǎng)方體ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分別為AD和CC1的中點(diǎn),O1為下底面正方形的中心。
(Ⅰ)證明:AF⊥平面FD1B1
(Ⅱ)求異面直線(xiàn)EB與O1F所成角的余弦值;               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在五棱錐中,,.
(1)求證:;
(2)求點(diǎn)E到面SCD的距離;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖3所示,在直三棱柱中,,,,

(Ⅰ)證明:平面;
(Ⅱ)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖,在棱長(zhǎng)都等于1的三棱錐中,上的一點(diǎn),過(guò)F作平行于棱AB和棱CD的截面,分別交BC,AD,BDE,G,H

(1) 證明截面EFGH是矩形;
(2)的什么位置時(shí),截面面積最大,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直角梯形中, 過(guò) 作,垂足為,分別為的中點(diǎn),現(xiàn)將沿折疊使二面角的平面角的正切值為.
(1)求證:平面
(2)求異面直線(xiàn)所成的角的余弦值;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在多面體ABCDA1B1C1D1中,上、下底面平行且均為矩形,相對(duì)的側(cè)面與同一底面所成的二面角大小相等,側(cè)棱延長(zhǎng)后相交于E,F兩點(diǎn),上、下底面矩形的長(zhǎng)、寬分別為cda,b,且ac,bd,兩底面間的距離為h。
(Ⅰ)求側(cè)面ABB1A1與底面ABCD所成二面角的大。
(Ⅱ)證明:EF∥面ABCD;
(Ⅲ)在估測(cè)該多面體的體積時(shí),經(jīng)常運(yùn)用近似公式V=S中截面·h來(lái)計(jì)算.已知它的體積公式是V=S上底面+4S中截面+S下底面),試判斷VV的大小關(guān)系,并加以證明。
(注:與兩個(gè)底面平行,且到兩個(gè)底面距離相等的截面稱(chēng)為該多面體的中截面)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在圖中,M、N是圓柱體的同一條母線(xiàn)上且位于上、下底面上的兩點(diǎn),圓柱底面半徑為1,高為2,若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,最短路程為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以下四個(gè)命題:①在圓柱的上、下兩底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線(xiàn)是圓柱的母線(xiàn);②圓錐的頂點(diǎn)與底面圓周上任意一點(diǎn)的連線(xiàn)是圓錐的母線(xiàn);③圓臺(tái)上、下圓周上各取一點(diǎn),則兩點(diǎn)的連線(xiàn)是圓臺(tái)的母線(xiàn);④圓柱的任意兩條母線(xiàn)相互平行.
其中正確的是(   )
A.①②B.②③C.①③D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案