【題目】對于區(qū)間和函數(shù),若同時滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域還是,則稱區(qū)間為函數(shù)的“不變”區(qū)間.
(1)求函數(shù)的所有“不變”區(qū)間.
(2)函數(shù)是否存在“不變”區(qū)間?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
【答案】(1)(2)
【解析】試題分析:(1)先確定函數(shù)單調(diào)性,再根據(jù)“不變”區(qū)間定義得,解得,即得“不變”區(qū)間(2)同上先確定函數(shù)單調(diào)性,再根據(jù)“不變”區(qū)間定義得,化簡得,因此,最后根據(jù)函數(shù),求實數(shù)的取值范圍
試題解析:(1)易知函數(shù)單調(diào)遞增,
故有解得 又,所以
所以函數(shù)的“不變”區(qū)間為.
(2)易知函數(shù)單調(diào)遞增,若函數(shù)存在“不變”區(qū)間,則有,且消去得,整理得.
因為,所以,即.
又由得,所以.
所以 所以.
綜上,當時,函數(shù)存在“不變”區(qū)間
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列是關于函數(shù)y=f(x),x∈[a,b]的幾個命題:
①若x0∈[a,b]且滿足f(x0)=0,則(x0,0)是f(x)的一個零點;
②若x0是f(x)在[a,b]上的零點,則可用二分法求x0的近似值;
③函數(shù)f(x)的零點是方程f(x)=0的根,但f(x)=0的根不一定是函數(shù)f(x)的零點;
④用二分法求方程的根時,得到的都是近似值.
那么以上敘述中,正確的個數(shù)為 ( )
A. 0 B. 1 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】否定“自然數(shù)、、中恰有一個偶數(shù)”時正確的反設為( )
A. 、、都是奇數(shù) B. 、、至少有兩個偶數(shù)
C. 、、都是偶數(shù) D. 、、中都是奇數(shù)或至少有兩個偶數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次購物抽獎活動中,假設某10張券中有一等獎1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有將;某顧客從此10張券中任取2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值(元)的概率分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O為AB的中點,矩形ABCD 所在的平面和平面ABEF互相垂直.
(1)求證:AF⊥平面CBF;
(2)設FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐C-BEF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com