【題目】下列是關于函數(shù)yf(x),x∈[a,b]的幾個命題:

①若x0∈[a,b]且滿足f(x0)=0,則(x0,0)是f(x)的一個零點;

②若x0f(x)在[ab]上的零點,則可用二分法求x0的近似值;

③函數(shù)f(x)的零點是方程f(x)=0的根,但f(x)=0的根不一定是函數(shù)f(x)的零點;

④用二分法求方程的根時,得到的都是近似值.

那么以上敘述中,正確的個數(shù)為 (  )

A. 0 B. 1 C. 3 D. 4

【答案】A

【解析】、且滿足f()=0,則f(x)的一個零點,而不是(,0),所以①錯誤;

、例如不可以用二分法求零點,所以②錯誤;

③、方程f(x)=0的根一定是函數(shù)f(x)的零點,所以③錯誤;

④、用二分法求方程的根時,得到的根也可能是精確值,所以④也錯誤。

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心軸上,半徑為1,直線被圓所截的弦長為,且圓心在直線的下方.

(1)求圓的方程;

(2)設,若圓的內(nèi)切圓,求的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點.

(1)求證:C1D⊥D1E;

(2)在棱AA1上是否存在一點M,使得BM∥平面AD1E?若存在,求的值,若不存在,說明理由;

(3)若二面角B1AED1的大小為90°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.

(1)求k的取值范圍;

(2)若=12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間和函數(shù),若同時滿足:①上是單調(diào)函數(shù);②函數(shù) 的值域還是,則稱區(qū)間為函數(shù)的“不變”區(qū)間.

1求函數(shù)的所有“不變”區(qū)間.

2函數(shù)是否存在“不變”區(qū)間?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經(jīng)驗,潛水員下潛的平均速度為/單位時間),每單位時間的用氧量為升),在水底作業(yè)10個單位時間,每單位時間用氧量為升),返回水面的平均速度為/單位時間),每單位時間用氧量為升),記該潛水員在此次考察活動中的總用氧量為升).

(1函數(shù)關系式;

(2,求當下潛速度什么時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正項數(shù)列{}滿足:,則稱此數(shù)列為“比差等數(shù)列”.

(1)請寫出一個“比差等數(shù)列”的前3項的值;

(2)設數(shù)列{}是一個“比差等數(shù)列”

(i)求證:;

(ii)記數(shù)列{}的前項和為,求證:對于任意,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點 ,且,記點, .

(Ⅰ)求直線的方程;

(Ⅱ)證明:線段與曲線有且只有一個異于、的公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】推行“課堂”教學法,某化學老師分別傳統(tǒng)教學和“課堂”種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,出的莖葉圖如下圖記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;

(2)上統(tǒng)計數(shù)據(jù)填寫下面聯(lián)表,并判斷能否在犯錯誤的概率不超過前提下認為“成績優(yōu)良與教學方式有關”?

總計

成績優(yōu)良

成績不優(yōu)良

總計

獨立性檢驗界值表:

查看答案和解析>>

同步練習冊答案