【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)( )
A.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變
B.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍橫坐標(biāo)不變
C.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變
D.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,橫坐標(biāo)不變
【答案】D
【解析】
根據(jù)函數(shù)的最小值、對(duì)稱(chēng)中心、對(duì)稱(chēng)軸以及函數(shù)過(guò)點(diǎn),可以求出的解析式,最后根據(jù)正弦型函數(shù)圖象變換的性質(zhì)進(jìn)行求解即可.
因?yàn)?/span>的最小值為,所以,再由對(duì)稱(chēng)中心與對(duì)稱(chēng)軸的距離可得周期,從而,所以.因?yàn)?/span>過(guò)點(diǎn),所以,解得.因?yàn)?/span>,所以,所以.則需將向右平移個(gè)單位,即,然后再將的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,得到.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)為的中點(diǎn),點(diǎn)為上的動(dòng)點(diǎn),下列說(shuō)法中:
①可能與平面平行;
②與所成的角的最大值為;
③與一定垂直;
④.
其中正確個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求證:時(shí),;
(Ⅱ)當(dāng)時(shí),計(jì)論函數(shù)的極值點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若曲線與直線相切,求的值.
(Ⅱ)若設(shè)求證:有兩個(gè)不同的零點(diǎn),且.(為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖象相鄰的最高點(diǎn)之間的距離為,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且為奇函數(shù),則( )
A.的圖象關(guān)于點(diǎn)對(duì)稱(chēng)B.的圖象關(guān)于點(diǎn)對(duì)稱(chēng)
C.在上單調(diào)遞增D.在上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蛋糕店計(jì)劃按天生產(chǎn)一種面包,每天生產(chǎn)量相同,生產(chǎn)成本每個(gè)6元,售價(jià)每個(gè)8元,未售出的面包降價(jià)處理,以每個(gè)5元的價(jià)格當(dāng)天全部處理完.
(1)若該蛋糕店一天生產(chǎn)30個(gè)這種面包,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:個(gè),)的函數(shù)解析式;
(2)蛋糕店記錄了30天這種面包的日需求量(單位:個(gè)),整理得表:
日需求量n | 28 | 29 | 30 | 31 | 32 | 33 |
頻數(shù) | 3 | 4 | 6 | 6 | 7 | 4 |
假設(shè)蛋糕店在這30天內(nèi)每天生產(chǎn)30個(gè)這種面包,求這30天的日利潤(rùn)(單位:元)的平均數(shù)及方差;
(3)蛋糕店規(guī)定:若連續(xù)10天的日需求量都不超過(guò)10個(gè),則立即停止這種面包的生產(chǎn),現(xiàn)給出連續(xù)10天日需求量的統(tǒng)計(jì)數(shù)據(jù)為“平均數(shù)為6,方差為2”,試根據(jù)該統(tǒng)計(jì)數(shù)據(jù)決策是否一定要停止這種面包的生產(chǎn)?并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè),且函數(shù)的解析式可以表示成,當(dāng)函數(shù)有且只有一個(gè)零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某校一間辦公室有四位老師甲、乙、丙、丁.在某天的某個(gè)時(shí)段,他們每人各做一項(xiàng)工作,一人在查資料,一人在寫(xiě)教案,一人在批改作業(yè),另一人在打印材料.
若下面4個(gè)說(shuō)法都是正確的:
①甲不在查資料,也不在寫(xiě)教案; ②乙不在打印材料,也不在查資料;
③丙不在批改作業(yè),也不在打印材料; ④丁不在寫(xiě)教案,也不在查資料.
此外還可確定:如果甲不在打印材料,那么丙不在查資料.根據(jù)以上信息可以判斷
A.甲在打印材料 | B.乙在批改作業(yè) | C.丙在寫(xiě)教案 | D.丁在打印材料 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)拋物線C的焦點(diǎn)F的直線l交拋物線C于A,B兩點(diǎn),且A,B兩點(diǎn)在拋物線C的準(zhǔn)線上的投影分別P、Q.
(1)已知,若,求直線l的方程;
(2)設(shè)P、Q的中點(diǎn)為M,請(qǐng)判斷PF與MB的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com