已知log
a
x1=logax2=log(a+1)x3>0,0<a<1,則x1,x2,x3的大小關(guān)系是( 。
A、x3<x2<x1
B、x2<x1<x3
C、x1<x3<x2
D、x2<x3<x1
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)log
a
x1=logax2=log(a+1)x3>0,0<a<1,可得0<x1,x2<1,x3>1,進(jìn)而由換底公式可得:log
a
x1=logax2=logax12,得到x1>x2
解答: 解:∵0<a<1,log
a
x1=logax2>0,
∴0<x1,x2<1,
又由a+1>1,log(a+1)x3>0,
可得x3>1,
又由log
a
x1=logax2=logax12,
故x12=x2,
故x1>x2
即x2<x1<x3,
故選:B
點(diǎn)評:本題考查的知識點(diǎn)是對數(shù)函數(shù)的圖象與性質(zhì),熟練掌握對數(shù)函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
滿足:|
a
|=3,|
b
|=4,|
a
-
b
|=5,則|
a
+
b
|=( 。
A、3
B、
5
C、5
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(x+
x2+1
)+bsinx+1滿足f(2)=3,則f(-2)等于( 。
A、-3B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、已知集合A={x|x(x-1)=0},則1⊆A
B、“x(x-1)=0”成立的必要不充分條件是“x=1”
C、“若a>b,則ac2>bc2”的逆否命題為真命題
D、若“p∧q”為真命題,則“p∨(¬q)”也為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
π
2
)=
4
5
,則cos(π-2α)=( 。
A、-
3
5
B、-
7
25
C、
3
5
D、
7
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sinωx(ω>0)的圖象的相鄰兩對稱軸間的距離為2,則ω的值為(  )
A、
2
π
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確命題的個數(shù)是( 。
①對任意兩向量
a
b
,均有:|
a
|-|
b
|<|
a
|+|
b
|
②若單位向量
a
b
夾角為120°,則當(dāng)|2
a
+x
b
|(x∈R)取最小值時,x=1
③若
OB
=(6,-3),
OA
=(3,-4),
OC
=(5-m,-3-m),∠ABC為銳角,則實(shí)數(shù)m的取值范圍是m>-
3
4

④在四邊形ABCD中,(
AB
+
BC
)-(
CD
+
DA
)=
0
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x+1
x-1
在點(diǎn)(2,3)處的切線方程為( 。
A、y=2x-1
B、y=-2x+7
C、y=-2x-1
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:函數(shù)f(x)=log 
1
3
(x2-mx+3m)是區(qū)間[1,+∞)上的減函數(shù),命題q:函數(shù)f(x)=
4
3
x3-2mx2+(4m-3)x-m在(-∞,+∞)上單調(diào)遞增.若p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案