(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點。
(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。
(1)要證明線線垂直,則只要根據(jù)線面垂直的性質定理可以證明。
(2)對于線面垂直的證明,一般先證明線線垂直,然后結合線面垂直的判定定理得到,關鍵是證明AE⊥PD和BA⊥PD。
【解析】
試題分析:(I)證明:∵PA⊥底面ABCD
∴CD⊥PA
又CD⊥AC,PA∩AC=A,
故CD⊥面PAC
AE面PAC,故CD⊥AE
(II)證明:PA=AB=BC,∠ABC=60°,
故PA=ACE是PC的中點,故AE⊥PC
由(I)知CD⊥AE,從而AE⊥面PCD,
故AE⊥PD
易知BA⊥PD,故PD⊥面ABE
考點:線線垂直和線面垂直
點評:本試題考查了空間中線線與線面的位置關系的運用,關鍵是熟練的結合線線與線面垂直的判定定理和性質定理來得到證明,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設,數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com