12.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為非零向量,若|($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$|=|($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$|,則( 。
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$∥$\overrightarrow{c}$或$\overrightarrow$∥$\overrightarrow{c}$D.$\overrightarrow{a}$⊥$\overrightarrow{c}$或$\overrightarrow$⊥$\overrightarrow{c}$

分析 根據(jù)數(shù)量積的意義,對(duì)已知等式去掉絕對(duì)值,分情況得到向量關(guān)系.

解答 解:因?yàn)?\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為非零向量,若|($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$|=|($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$|,
所以($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$,或者($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=-[($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$],
展開(kāi)整理得到$\overrightarrow•\overrightarrow{c}$=0,或者$\overrightarrow{a}•\overrightarrow{c}$=0,所以$\overrightarrow⊥\overrightarrow{c}$或$\overrightarrow{a}⊥\overrightarrow{c}$;
故選D.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積的運(yùn)算;熟記數(shù)量積公式以及意義是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若如圖框圖所給的程序運(yùn)行結(jié)果為S=41,圖中的判斷框①中是i>a,則實(shí)數(shù)a的取值范圍是(  )
A.(5,6]B.[5,6)C.(6,7]D.[6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從1,2,3,4,5這五個(gè)數(shù)字中選出三個(gè)不相同數(shù)組成一個(gè)三位數(shù),則奇數(shù)位上必須是奇數(shù)的三位數(shù)個(gè)數(shù)為( 。
A.12B.18C.24D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.右邊程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)
相除法”,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余
數(shù)),若輸入的m,n分別為495,135,則輸出的m=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,輸入的S0值為10時(shí),則輸出的S的值為(  )
A.-4B.2C.-20D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.為提高市場(chǎng)銷(xiāo)售業(yè)績(jī),某公司設(shè)計(jì)兩套產(chǎn)品促銷(xiāo)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),并在某地區(qū)部分營(yíng)銷(xiāo)網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷(xiāo)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷(xiāo)售情況,分別統(tǒng)計(jì)相應(yīng)營(yíng)銷(xiāo)網(wǎng)點(diǎn)個(gè)數(shù),制作相應(yīng)的列聯(lián)表如表所示.
無(wú)促銷(xiāo)活動(dòng)采用促銷(xiāo)方案1采用促銷(xiāo)方案2
本年度平均銷(xiāo)售額不高于上一年度平均銷(xiāo)售額48113190
本年度平均銷(xiāo)售額高于上一年度平均銷(xiāo)售額526929150
1008060
(Ⅰ)請(qǐng)根據(jù)列聯(lián)表提供的信息,為該公司今年選擇一套較為有利的促銷(xiāo)方案(不必說(shuō)明理由);
(Ⅱ)已知該公司產(chǎn)品的成本為10元/件(未包括促銷(xiāo)活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷(xiāo)售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)xi(單位:元/件,整數(shù))和銷(xiāo)量yi(單位:件)(i=1,2,…8)如表所示:
售價(jià)x3335373941434547
銷(xiāo)量y840800740695640580525460
(。┱(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù)R2,并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
(ⅱ)根據(jù)所選回歸模型,分析售價(jià)x定為多少時(shí)?利潤(rùn)z可以達(dá)到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
$\sum_{i=1}^8{({y_i}}-{\hat y_i}{)^2}$49428.7411512.43175.26
$\sum_{i=1}^8{({y_i}}-\overline y{)^2}$124650
參考公式:相關(guān)指數(shù)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,a=2,b=3,C=120°,求邊c的大小及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.P(x,y)是曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是參數(shù))上的動(dòng)點(diǎn),則$\frac{y}{x}$的取值范圍是( 。
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[0,$\frac{\sqrt{3}}{3}$]D.(-∞,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f(0)=0.若對(duì)任意x∈R,都有f(x)>f′(x)+1,則使得f(x)+ex<1成立的x的取值范圍為(  )
A.(-∞,0)B.(-∞,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案