【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式。某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大小(不要求計算出具體值,給出結(jié)論即可);
(2)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
A | B | 合計 | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計 |
(3)在A,B城市對此種交通方式“認(rèn)可”的用戶中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車維護(hù)”志愿活動,求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
【答案】(1)A城市評分的平均值小于B城市評分的平均值, A城市評分的方差大于B城市評分的方差,(2)沒有95%的把握,(3)
【解析】試題分析:
(1)結(jié)合莖葉圖根據(jù)數(shù)據(jù)的分布可得結(jié)論.(2)結(jié)合題意的到列聯(lián)表,根據(jù)表中的數(shù)據(jù)求得,對比臨界值表可得沒有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān).(3)先由分層抽樣方法得到在A,B兩市抽取的人數(shù),然后根據(jù)古典概型概率公式求解即可.
試題解析:
(1) 由莖葉圖可得:A城市評分的平均值小于B城市評分的平均值;
A城市評分的方差大于B城市評分的方差.
(2) 由題意可得2×2列聯(lián)表如下:
故,
所以沒有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān).
(3) 由題意得在A市抽取人,設(shè)為x,y;在B市抽取人,設(shè)為a,b,c,d.
則從6人中推薦2人的所有基本事件共有:
,共15個.
設(shè)“A市至少有1人”為事件M,則事件M包含的基本事件為: ,共9個.
由古典概型概率公式可得,
故A城市中至少有1人的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若對任意,≥0恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球都相切,這樣的小球最多可放入__________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“既要金山銀山,又要綠水青山”。某風(fēng)景區(qū)在一個直徑為米的半圓形花圓中設(shè)計一條觀光線路。打算在半圓弧上任選一點(與不重合),沿修一條直線段小路,在路的兩側(cè)(注意是兩側(cè))種植綠化帶;再沿弧修一條弧形小路,在小路的一側(cè)(注意是一側(cè))種植綠化帶,小路與綠化帶的寬度忽略不計。
(1)設(shè)(弧度),將綠化帶的總長度表示為的函數(shù);
(2)求綠化帶的總長度的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時,;
(Ⅲ)確定實數(shù)的所有可能取值,使得存在,當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,且橢圓經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與圓相切:
(。┣髨A的標(biāo)準(zhǔn)方程;
(ⅱ)若直線過定點,與橢圓交于不同的兩點,與圓交于不同的兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,過對角線的一個平面交于點,交于.
①四邊形一定是平行四邊形;
②四邊形有可能是正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④四邊形有可能垂直于平面.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由四個不同的數(shù)字1,2,4,組成無重復(fù)數(shù)字的三位數(shù).(最后的結(jié)果用數(shù)字表達(dá))
(Ⅰ)若,其中能被5整除的共有多少個?
(Ⅱ)若,其中能被3整除的共有多少個?
(Ⅲ)若,其中的偶數(shù)共有多少個?
(Ⅳ)若所有這些三位數(shù)的各位數(shù)字之和是252,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一半徑為米的水輪如圖所示,水輪圓心距離水面米;已知水輪按逆時針做勻速轉(zhuǎn)動,每秒轉(zhuǎn)一圈,如果當(dāng)水輪上點從水中浮現(xiàn)時(圖中點)開始計算時間.
(1)以水輪所在平面與水面的交線為軸,以過點且與水面垂直的直線為軸,建立如圖所示的直角坐標(biāo)系,試將點距離水面的高度(單位:米)表示為時間(單位:秒)的函數(shù);
(2)在水輪轉(zhuǎn)動的任意一圈內(nèi),有多長時間點距水面的高度超過米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com