【題目】如圖所示,在棱長(zhǎng)為2的正方體中,的中點(diǎn)是P,過點(diǎn)作與截面平行的截面,則截面的面積為__________.

【答案】

【解析】

試題取AB、C1D1的中點(diǎn)MN,連結(jié)A1M、MC、CN、NA1.由已知得四邊形A1MCN是平行四邊形,連結(jié)MN,作A1H⊥MNH,由題意能求出截面的面積.

解:取AB、C1D1的中點(diǎn)MN,連結(jié)A1MMC、CN、NA1

由于A1N∥PC1∥MCA1N=PC1=MC,

四邊形A1MCN是平行四邊形.

∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,

PC1∩BP=P

平面A1MCN∥平面PBC1

因此,過A1點(diǎn)作與截面PBC1平行的截面是平行四邊形.

又連結(jié)MN,作A1H⊥MNH,由于A1M=A1N=,MN=2

AH=

=,

=2=2

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),fx)的導(dǎo)函數(shù).

1)若a=b=c,f4=8,求a的值;

2)若ab,b=c,且fx)和的零點(diǎn)均在集合中,求fx)的極小值;

3)若,且fx)的極大值為M,求證:M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015秋?谛<(jí)期中)直線l過點(diǎn)(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠C發(fā)生爆炸出現(xiàn)毒氣泄漏,已知毒氣以圓形向外擴(kuò)散,且半徑以每分鐘的速度增大. 一所學(xué)校A,位于工廠C南偏西,且與工廠相距.消防站B位于學(xué)校A的正東方向,且位于工廠C南偏東,立即以每分鐘的速度沿直線趕往工廠C救援,同時(shí)學(xué)校組織學(xué)生PA處沿著南偏東的道路,以每分鐘的速度進(jìn)行安全疏散(與爆炸的時(shí)間差忽略不計(jì)).要想在消防員趕往工廠的時(shí)間內(nèi)(包括消防員到達(dá)工廠的時(shí)刻),保證學(xué)生的安全,學(xué)生撤離的速度應(yīng)滿足什么要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),,且. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正整數(shù),Sn為其前n項(xiàng)和,對(duì)于n12,3,有,其中為使為奇數(shù)的正整數(shù),當(dāng)時(shí),的最小值為__________;當(dāng)時(shí),___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小正三角形組成的一個(gè)大正三角形,設(shè),若在大正三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正三角形的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)N在曲線上,直線軸交于點(diǎn),動(dòng)點(diǎn)滿足,記點(diǎn)的軌跡為

1)求的軌跡方程;

2)若過點(diǎn)的直線交于兩點(diǎn),點(diǎn)在直線 (為坐標(biāo)原點(diǎn)),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案