已知集合U=R,集合A={x|y=
1-
1
x
},則∁UA=( 。
A、{x|x<0或x≥1}
B、{x|0≤x<1}
C、{x|x≥1}
D、{x|x<0}
考點(diǎn):補(bǔ)集及其運(yùn)算
專題:集合
分析:先由被開方數(shù)大于或等于零,得到一個(gè)關(guān)于x的分式不等式,從而將集合A化簡,再進(jìn)行補(bǔ)集運(yùn)算.
解答: 解:在集合A中,由1-
1
x
≥0,得
x-1
x
≥0,
從而x≥1,或x<0,
由U=R知,∁UA={x|0≤x<1}.
故選B.
點(diǎn)評:本題屬容易題,但容易出錯(cuò),考查了根式的性質(zhì)、分式不等式的解法及補(bǔ)集運(yùn)算法則,特別注意式子中等號成立的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若目標(biāo)函數(shù)z=-ax+y取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,M是正方形ABCD的中心,N是棱CC1(包括端點(diǎn))上的動(dòng)點(diǎn),現(xiàn)給出以下命題:
①對于任意的點(diǎn)N,都有MN⊥B1D1;
②存在點(diǎn)N,使得MN⊥平面A1BD;
③存在點(diǎn)N,使得異面直線MN和A1B1所成角的余弦值是
6
3
;
④對于任意的點(diǎn)N,三棱錐B-MND1的體積為定值.
其中正確命題的編號是
 
.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一個(gè)棱長為3的正方體中切去一些部分,得到一個(gè)幾何體,其三視圖如圖,則該幾何體的體積是(  )
A、3B、7C、9D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-a•2x與f(x)=4x+a+1的圖象有交點(diǎn),則a的取值范圍是( 。
A、a≤2-2
2
或 a≥2+2
2
B、a<-1
C、-1≤a≤2-2
2
D、a≤2-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin240°等于(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(1)=1,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<
1
2
,則不等式f(x)<
1
2
x+
1
2
的解集為( 。
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(6+x-x2)的定義域是( 。
A、{x|x<-2,或x>3}
B、{x|-2<x<3}
C、{x|2<x<3}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AB∥平面ACD,DE∥AB,△ACD是正三角形,F(xiàn)是CD的中點(diǎn),AD=4,DE=2AB=3.
(1)求證:AF∥平面BCE;
(2)求四棱錐C-ABED的體積.

查看答案和解析>>

同步練習(xí)冊答案