定義在(0,+∞)上的函數(shù)f(x)滿足f(
x
y
)=f(x)-f(y),且當(dāng)x>1時(shí),f(x)>0
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)若f(3)=1不等式 f(x)-f(
1
x-8
)≥2
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用賦值法即可求f(1)的值;
(2)根據(jù)函數(shù)的單調(diào)性的性質(zhì)和定義即可證明f(x)在(0,+∞)上是增函數(shù);
(3)若f(3)=1將不等式 f(x)-f(
1
x-8
)≥2
進(jìn)行等價(jià)轉(zhuǎn)化,結(jié)合函數(shù)單調(diào)性的性質(zhì)解不等式即可.
解答: 解:(1)∵定義在(0,+∞)上的函數(shù)f(x)滿足f(
x
y
)=f(x)-f(y)
,
令x=y=1,則f(
1
1
)=f(1)-f(1)
,
故f(1)=0.
(2)設(shè)任意的0<x1<x2,則
x2
x1
>1
,
∵當(dāng)x>1時(shí),f(x)>0
f(x2)-f(x1)=f(
x2
x1
)>0⇒f(x1)<(fx2)
,
∴f(x)是(0,+∞)上的增函數(shù).
(3)∵f(3)=1,f(x)-f(
1
x-8
)≥2

∴f(
x
1
x-8
)-f(3)≥f(3),
由(2)知f(x)是(0,+∞)上的增函數(shù),
x(x-8)
3
≥3
x>0
1
x-8
>0
x≤-1,x≥9
x>0
x>8
⇒x≥9
,
∴原不等式的解集是[9,+∞).
點(diǎn)評(píng):本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)函數(shù)單調(diào)性將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下表為某大型超市一個(gè)月的銷售收入情況表,則本月銷售收入的平均增長(zhǎng)率( 。
日期51015202530
銷售收入(萬元)204090160275437.5
A、一樣B、越來越大
C、越來越小D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
x→-1
x2+ax+4
x2-1
=-
3
2
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈R,方程x2+(k+3i)x+4+k=0有實(shí)根的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+i
1-i
6+
2
+
3
i
3
-
2
i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司年初花費(fèi)72萬元購進(jìn)一臺(tái)設(shè)備,并立即投入使用.計(jì)劃第一年維修費(fèi)用為8萬元,從第二年開始,每一年所需維修費(fèi)用比上一年增加4萬元.現(xiàn)已知設(shè)備使用后,每年獲得的收入為46萬元.
(1)若設(shè)備使用x年后的累計(jì)盈利額為y萬元,試寫出y與x之間的函數(shù)關(guān)系式(計(jì)盈利額=累計(jì)收入-累計(jì)維護(hù)費(fèi)-設(shè)備購置費(fèi));
(2)問使用該設(shè)備后,才第幾年開始盈利(累計(jì)盈利額為正值)?
(3)如果使用若干年后,對(duì)該設(shè)備的處理方案有兩種:當(dāng)年平均盈利額達(dá)到最大值時(shí),可折舊按42萬元的價(jià)格出售該設(shè)備:當(dāng)累計(jì)盈利額達(dá)到最大值時(shí),可折舊按10萬元的價(jià)格出售該設(shè)備.問用哪種處理方案較為合算?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)原來每年可生產(chǎn)某種設(shè)備65件,每件設(shè)備的銷售價(jià)格為10萬元,為了增加企業(yè)效益,該企業(yè)今年準(zhǔn)備投入資金x萬元對(duì)生產(chǎn)工藝進(jìn)行革新,已知每投入10萬元資金生產(chǎn)的設(shè)備就增加1件,同時(shí)每件設(shè)備的生產(chǎn)成本a萬元與投入資金x萬元之間的關(guān)系是a=
25
x+25
,若設(shè)備的銷售價(jià)格不變,生產(chǎn)的設(shè)備能全部賣出,投入資金革新后的年利潤(rùn)為y萬元(年利潤(rùn)=年銷售額-年投入資金額-年生產(chǎn)成本).
(Ⅰ)試將該企業(yè)的年利潤(rùn)y萬元表示為投入資金x萬元的函數(shù);
(Ⅱ)該企業(yè)投入資金為多少萬元時(shí),企業(yè)的年利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1.
(1)求證:直線BC1∥平面D1AC.
(2)求D1C與平面D1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P在曲線y=x2上,點(diǎn)Q在直線y=2x-2上,則PQ的最小值為(  )
A、
5
5
B、
2
5
5
C、
3
5
5
D、
4
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案