設(shè)a>0,將
a•
a
3a
表示成分?jǐn)?shù)指數(shù)冪,其結(jié)果是( 。
A、a
1
2
B、a
7
6
C、a
5
6
D、a
3
2
分析:根據(jù)指數(shù)冪和根式的關(guān)系即可得到結(jié)論.
解答:解:∵a>0,
a•
a
3a
=a•a
1
2
a-
1
3
=a
7
6
,
故選:B.
點(diǎn)評(píng):本題主要考查指數(shù)冪的化簡(jiǎn),利用指數(shù)冪和根式之間的關(guān)系即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A),繼續(xù)對(duì)數(shù)列B進(jìn)行“T變換”,得到數(shù)列C:cl,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項(xiàng)均為0時(shí)變換結(jié)束.
(Ⅰ)寫出數(shù)列A:2,6,4經(jīng)過(guò)5次“T變換”后得到的數(shù)列;
(Ⅱ)若a1,a2,a3不全相等,判斷數(shù)列A:a1,a2,a3經(jīng)過(guò)不斷的“T變換”是否會(huì)結(jié)束,并說(shuō)明理由;
(Ⅲ)設(shè)數(shù)列A:400,2,403經(jīng)過(guò)k次“T變換”得到的數(shù)列各項(xiàng)之和最小,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)對(duì)于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對(duì)數(shù)列B進(jìn)行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項(xiàng)均為0時(shí)變換結(jié)束.
(Ⅰ)試問(wèn)A:2,6,4經(jīng)過(guò)不斷的“T變換”能否結(jié)束?若能,請(qǐng)依次寫出經(jīng)過(guò)“T變換”得到的各數(shù)列;若不能,說(shuō)明理由;
(Ⅱ)設(shè)A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項(xiàng)之和為2012.
(ⅰ)求a,b;
(ⅱ)若數(shù)列B再經(jīng)過(guò)k次“T變換”得到的數(shù)列各項(xiàng)之和最小,求k的最小值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于實(shí)數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實(shí)數(shù)y稱為實(shí)數(shù)x的小數(shù)部分,用記號(hào){x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.對(duì)于實(shí)數(shù)a,無(wú)窮數(shù)列{an}滿足如下條件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想數(shù)列{a}的通項(xiàng)公式(不需要證明);
(2)當(dāng)a>
1
4
時(shí),對(duì)任意的n∈N*,都有an=a,求符合要求的實(shí)數(shù)a構(gòu)成的集合A;
(3)若a是有理數(shù),設(shè)a=
p
q
 (p是整數(shù),q是正整數(shù),p,q互質(zhì)),對(duì)于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市靜安區(qū)高三下學(xué)期質(zhì)量調(diào)研考試數(shù)學(xué)理卷 題型:選擇題

已知有窮數(shù)列A).定義如下操作過(guò)程T:從A中任取兩項(xiàng),將的值添在A的最后,然后刪除,這樣得到一系列項(xiàng)的新數(shù)列A1 (約定:一個(gè)數(shù)也視作數(shù)列);對(duì)A1的所有可能結(jié)果重復(fù)操作過(guò)程T又得到一系列項(xiàng)的新數(shù)列A2,如此經(jīng)過(guò)次操作后得到的新數(shù)列記作Ak . 設(shè)A,則A3的可能結(jié)果是……………………………(   )

(A)0; 。˙);   。–);   。―).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市寶山區(qū)高三第二次模擬測(cè)試?yán)砜茢?shù)學(xué)卷 題型:選擇題

已知有窮數(shù)列A:).定義如下操作過(guò)程T:從A中任取兩項(xiàng),將的值添在A的最后,然后刪除,這樣得到一系列項(xiàng)的新數(shù)列A1 (約定:一個(gè)數(shù)也視作數(shù)列);對(duì)A1的所有可能結(jié)果重復(fù)操作過(guò)程T又得到一系列項(xiàng)的新數(shù)列A2,如此經(jīng)過(guò)次操作后得到的新數(shù)列記作Ak . 設(shè)A:,則A3的可能結(jié)果是……………………………(   )

(A)0;  (B);   。–);    (D).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案