11.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,若y-x的最大值是a,則二項(xiàng)式(ax-$\frac{1}{x}$)6的展開式中的常數(shù)項(xiàng)為-540,(用數(shù)字作答)

分析 首先利用約束條件得到可行域,結(jié)合y-x的幾何意義求出其最大值,然后對二項(xiàng)式的通項(xiàng)求常數(shù)項(xiàng).

解答 解:已知得到可行域如圖:設(shè)z=y-x變形為y=x+z,當(dāng)此直線經(jīng)過圖中B(0,3)時(shí),
直線在y軸的截距最大,z最大,
所以z 的最大值為3,
所以a=3,二項(xiàng)式(3x-$\frac{1}{x}$)6的通項(xiàng)為${C}_{6}^{r}(3x)^{6-r}(-\frac{1}{x})^{r}=(-1)^{r}{{3}^{6-r}C}_{6}^{r}{x}^{6-2r}$,
所以r=3時(shí),展開式中的常數(shù)項(xiàng)為$-{3}^{3}{C}_{6}^{3}$=-540;
故答案為:-540

點(diǎn)評(píng) 本題考查了簡單線性規(guī)劃問題與二項(xiàng)式定理的運(yùn)用;關(guān)鍵是利用數(shù)形結(jié)合正確求出a,然后由二項(xiàng)展開式通項(xiàng)求常數(shù)項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)在R上可導(dǎo),f(x)=2xf'(e)+lnx,則f'(e)=(  )
A.1B.-1C.$-\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(diǎn)P(4,-3),那么cosα-sinα的值是( 。
A.$\frac{1}{5}$B.-$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.己知某幾何體的三視圖如圖所示,則其表面積為( 。
A.6+4$\sqrt{2}$B.4+4$\sqrt{2}$C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x>0,由不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,推廣到x+$\frac{a}{{x}^{n}}$≥n+1,則a=( 。
A.2nB.2nC.n2D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=x•lnx+ax,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對?x>1,f(x)>(b+a-1)x-b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$(0≤α<π,t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=$\frac{4cosθ}{si{n}^{2}θ}$.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(Ⅱ)若直線l經(jīng)過點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知下列命題:
①?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3;
②若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);
③若f(x)=x+$\frac{1}{x+1}$,?x0∈(0,+∞),f(x0)=1;
④在△ABC中,若A>B,則sin A>sin B.
其中真命題是①②④.(將所有真命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(2,-1),在區(qū)間[-1,1]上隨機(jī)地取一個(gè)數(shù)x,則事件“$\overrightarrow{a}$•$\overrightarrow$≥0”發(fā)生的概率為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案