(1)在空間直角坐標(biāo)系O-xyz中,畫出不共線的3個(gè)點(diǎn)PQR,使得這3個(gè)點(diǎn)的坐標(biāo)都滿足z=3,并畫出圖形;

(2)寫出由這三個(gè)點(diǎn)確定的平面上的點(diǎn)的坐標(biāo)應(yīng)滿足的條件.

答案:略
解析:

解:(1)取三個(gè)點(diǎn)P(0,0,3),Q(4,03),R(04,3)

(2)P,Q,R三點(diǎn)不共線,可以確定一個(gè)平面.又因?yàn)檫@三點(diǎn)在xOy平面的同側(cè),且到xOy平面的距離相等,所以平面PQR平行于xOy平面,而且平面PQR上的每一個(gè)點(diǎn)在z軸上的射影到原點(diǎn)的距離都等于3,即該平面上的點(diǎn)的坐標(biāo)都滿足z=3.如圖所示.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由空間向量基本定理可知,空間任意向量
p
可由三個(gè)不共面的向量
a
b
,
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
,
b
,
c
下的廣義坐標(biāo).特別地,當(dāng)
a
,
b
,
c
為單位正交基底時(shí),(x,y,z)為直角坐標(biāo).設(shè)
i
,
j
,
k
分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底
i
+
j
,
i
-
j
,
k
下的廣義坐標(biāo)為
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M是A1B1的中點(diǎn).求出點(diǎn)M的空間直角坐標(biāo),柱坐標(biāo),球坐標(biāo)來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

由空間向量基本定理可知,空間任意向量
p
可由三個(gè)不共面的向量
a
b
,
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
,
b
,
c
下的廣義坐標(biāo).特別地,當(dāng)
a
b
,
c
為單位正交基底時(shí),(x,y,z)為直角坐標(biāo).設(shè)
i
,
j
k
分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底
i
+
j
,
i
-
j
,
k
下的廣義坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由空間向量基本定理可知,空間任意向量可由三個(gè)不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標(biāo).特別地,當(dāng)為單位正交基底時(shí),(x,y,z)為直角坐標(biāo).設(shè)分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底下的廣義坐標(biāo)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由空間向量基本定理可知,空間任意向量可由三個(gè)不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標(biāo).特別地,當(dāng)為單位正交基底時(shí),(x,y,z)為直角坐標(biāo).設(shè)分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底下的廣義坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案