已知曲線C:f(x)=x2+1,求過點P(0,0)且與曲線C相切的切線l的方程.
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出函數(shù)的導數(shù),利用導數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:∵f(x)=x2+a,
∴f′(x)=2x,
設切點坐標為(a,b),
則f′(a)=2a,f(a)=a2+1=b,
則對應的切線方程為y-(a2+1)=2a(x-a),
即切線方程為y=2ax-a2+1,
∵切線過點P(0,0),
∴0=-a2+1,解得a=1或a=-1,
當a=1時,切線方程為y=2x,
當a=-1時,切線方程為y=-2x,
故過點P(0,0)且與曲線C相切的切線l的方程為y=2x或y=-2x.
點評:本題主要考查導數(shù)的幾何意義,根據(jù)條件求出對應的切線斜率和切點坐標是解決本題的關鍵,注意過點的切線和在點的切線之間的區(qū)別.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從我校4名男生和3名女生中任選3人參加孝感市迎五四演講比賽.設隨機變量X表示所選3人中女生的人數(shù).
(1)求X的分布列;
(2)求“所選3人中女生人數(shù)X≤1”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2-
x
8展開式中
(1)求x4項的系數(shù)
(2)求不含x4項的系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x2+1)+x-1
x
-lnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設g(x)=x2-2bx+4,當a=
1
3
時,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)+g(x2)≤0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,點D在邊BC上,且
DC
=2
BD

(1)用向量
AB
,
AC
表示向量
AD
;
(2)若|
AB
|:|
AD
|:|
AC
|=3:k:1,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},求A∩B.
(2)當k取什么值時,一元二次不等式2kx2+kx-
3
8
<0對一切實數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a3=5,S15=225.
(1)求{an}的通項an;
(2)數(shù)列{bn}為等比數(shù)列,b3=a2+a3,b2b5=128,求{bn}的前8項和T8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn=n2-n(n∈N*),則通項公式an=
 

查看答案和解析>>

同步練習冊答案