【題目】已知函數(shù),且為自然對(duì)數(shù)的底數(shù))

1)判斷函數(shù)的單調(diào)性并證明;

2)判斷函數(shù)的奇偶性并證明;

3)是否存在實(shí)數(shù),使不等式對(duì)一切都成立?若存在,求出的范圍,若不存在說明理由.

【答案】1)增函數(shù),證明見解析(2)奇函數(shù),證明見解析(3)存在,

【解析】

1)利用單調(diào)性的定義證明單調(diào)性;

2)利用奇偶性的定義證明奇偶性;

3)根據(jù)(1)(2)的結(jié)論脫去f,分離參數(shù),轉(zhuǎn)化為二次函數(shù)問題,求實(shí)數(shù)t的取值范圍.

1)任取x1,x2∈(﹣,+∞),且x1x2,

fx2)﹣fx1,

yexR上為增函數(shù)且ex0,

,∴

fx2)>fx1),

fx)在(﹣,+∞)上是增函數(shù).

2)∵函數(shù)fx)=exexxR,定義域關(guān)于原點(diǎn)對(duì)稱,

f(﹣x)=exex=﹣(exex)=﹣fx),

fx)為奇函數(shù).

3)由(1)(2)知fx)在R上為奇函數(shù)且單調(diào)遞增,由

可得:,

即:對(duì)一切都成立,

解得:

綜上存在實(shí)數(shù),t的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若存在使得,求實(shí)數(shù)的取值范圍;

(Ⅲ)若當(dāng)時(shí)恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程的實(shí)根個(gè)數(shù)記.1)若,則=____________;(2)若,存在使得成立,則的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)f(x),對(duì)于任意的mn(0,+∞),都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.

(1)求證:1是函數(shù)f(x)的零點(diǎn);

(2)求證:f(x)(0,+∞)上的減函數(shù);

(3)當(dāng)f(2)=時(shí),解不等式f(ax+4)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域是R上的奇函數(shù)

1)求a

2)判斷R上的單調(diào)性,并用定義法證明;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍;

4)設(shè)關(guān)于x方程有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某食品廠生產(chǎn)的面包中抽取個(gè),測(cè)量這些面包的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

頻數(shù)

(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計(jì)這種面包質(zhì)量指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定?”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)在如圖所示給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;

(2)寫出f(x)的單調(diào)遞增區(qū)間;

(3)由圖象指出當(dāng)x取什么值時(shí)f(x)有最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線上一點(diǎn)的極坐標(biāo)為,且過點(diǎn),求的普通方程和的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),的交點(diǎn)為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案