【題目】關(guān)于的方程的實(shí)根個(gè)數(shù)記.1)若,則=____________;(2)若,存在使得成立,則的取值范圍是_____.

【答案】

【解析】

1)根據(jù)一次函數(shù)的特點(diǎn)直接可得到此時(shí)的值;

2)利用函數(shù)圖象先考慮是否滿足,再利用圖象分析時(shí)滿足要求時(shí)對應(yīng)的不等式,從而求解出的取值范圍.

1)若gx=x+1,則函數(shù)的值域?yàn)?/span>R,且函數(shù)為單調(diào)函數(shù),故方程gx=t有且只有一個(gè)根,故ft=1,

2

當(dāng)時(shí),利用圖象分析可知:

如下圖,此時(shí),,不滿足題意;

如下圖,此時(shí),,不滿足題意;

當(dāng)時(shí),利用圖象分析可知:

當(dāng)時(shí),由上面圖象分析可知不符合題意,

當(dāng)時(shí),若要滿足,如下圖所示:

只需滿足:,,所以,解得.

綜上可知:.

故答案為:;.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x22x30}B{x|x22mxm240,xRmR}

(1)AB[0,3],求實(shí)數(shù)m的值;

(2)ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若對任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若,的最大值是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設(shè),若,均,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長和焦距都等于2,是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.

(1)求橢圓的方程;

(2)證明:直線的斜率為定值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長軸是短軸的倍,且右焦點(diǎn)為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)直線交橢圓兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:指數(shù)函數(shù)是減函數(shù);命題,使關(guān)于的方程有實(shí)數(shù)解,其中.

(1)當(dāng)時(shí),若為真命題,求的取值范圍;

(2)當(dāng)時(shí),若為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且為自然對數(shù)的底數(shù))

1)判斷函數(shù)的單調(diào)性并證明;

2)判斷函數(shù)的奇偶性并證明;

3)是否存在實(shí)數(shù),使不等式對一切都成立?若存在,求出的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

同步練習(xí)冊答案