【題目】陜西理工大學開展大學生社會實踐活動,用“10分制”隨機調查漢臺區(qū)某社區(qū)居民的幸福指數(shù),現(xiàn)從調查人群中隨機抽取16人,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分以小數(shù)點的前一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉

寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

若幸福指數(shù)不低于9分,則稱該人的幸福指數(shù)為“極幸福”;若幸福指數(shù)不高于8分,則稱該人的幸福指數(shù)為“不夠幸!現(xiàn)從這16人中幸福指數(shù)為“極幸!焙汀安粔蛐腋!钡娜酥腥我膺x取2人,求選出的兩人的幸福指數(shù)均為“極幸!钡母怕剩

【答案】(1)眾數(shù)為,中位數(shù)為;(2).

【解析】

由莖葉圖能求出眾數(shù)和中位數(shù).

人中極幸福的有4人,分別記為,,,,“不夠幸福的有2人,分別記為,,從這6人中任取2人,利用列舉法能求出選出的兩人的幸福指數(shù)均為極幸福的概率.

由莖葉圖得眾數(shù)為,中位數(shù)為:

人中“極幸福”的有4人,分別記為,,

“不夠幸!钡挠2人,分別記為,,

從這6人中任取2人共有以下15種情況:

,,,,,,,,,,,,

其中兩人都為“極幸福”的有6種情況

,

選出的兩人的幸福指數(shù)均為“極幸!钡母怕蕿

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。

(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?

(2)設抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作,求事件M“抽取的2名同學來自同一年級”發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求函數(shù)的最小值;

(Ⅱ)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生會為了解高二年級600名學生課余時間參加中華傳統(tǒng)文化活動的情況(每名學生最多參加7場).隨機抽取50名學生進行調查,將數(shù)據(jù)分組整理后,列表如下:

參加場數(shù)

0

1

2

3

4

5

6

7

占調查人數(shù)的百分比

8%

10%

20%

26%

18%

m%

4%

2%

則以下四個結論中正確的是( )

A.表中m的數(shù)值為10

B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學生約為108人

C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學生約為216人

D.若采用系統(tǒng)抽樣方法進行調查,從該校高二600名學生中抽取容量為30的樣本,則分段間隔為15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)圖象經(jīng)過的定點坐標;

(2)時,求曲線在點處的切線方程及函數(shù)單調區(qū)間;

(3)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB為圓O的直徑,點EF在圓O上,,矩形ABCD和圓O所在的平面互相垂直,已知,

求證:平面平面CBF;

時,求多面體FABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標方程與曲線的普通方程;

(2)將曲線經(jīng)過伸縮變換后得到曲線,若, 分別是曲線和曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某地三角工廠分別位于邊長為2的正方形的兩個頂點中點.為處理這三角工廠的污水,在該正方形區(qū)域內(含邊界)與等距的點處建一個污水處理廠,并鋪設三條排污管道,記輔設管道總長為千米.

1)按下列要求建立函數(shù)關系式:

i)設,將表示成的函數(shù);

ii)設,將表示成的函數(shù);

2)請你選用一個函數(shù)關系,確定污水廠位置,使鋪設管道總長最短.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四棱錐中,底面ABCD是平行四邊形,平面ABCD,垂足為G,GAD上,且,,,,EBC的中點.

求異面直線GEPC所成的角的余弦值;

求點D到平面PBG的距離;

F點是棱PC上一點,且,求的值.

查看答案和解析>>

同步練習冊答案