(本小題滿分12分)
已知正項(xiàng)數(shù)列中,,點(diǎn)在函數(shù)的圖像上,數(shù)列中,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和。。
(1)  求數(shù)列的通項(xiàng)公式;
(2)  求數(shù)列的前n項(xiàng)和
解:(1)由題意得:-------3
是以2為首項(xiàng),1為公差的等差數(shù)列
----------6
(2)由題意得:        ①-------7
當(dāng)n=1時(shí),
當(dāng)時(shí),      ②
①—②得:    

是以2為首項(xiàng),為公比的等比數(shù)列-------10
 --------------12
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
從數(shù)列中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列的一個(gè)子數(shù)列.
設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無(wú)窮等差數(shù)列.
(1)若,成等比數(shù)列,求其公比
(2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
(3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng).求證:當(dāng)為大于1的正整數(shù)時(shí),該數(shù)列為的無(wú)窮等比子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
在數(shù)列中,,
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的值;
(3)設(shè),數(shù)列的前項(xiàng)和為,,是否存在實(shí)數(shù),使得對(duì)任意的正整數(shù)和實(shí)數(shù),都有成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題為必做題,滿分10分)已知數(shù)列滿足:.
(1) 求證:使
(2) 求的末位數(shù)字.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列為等差數(shù)列,且,,數(shù)列的前項(xiàng)和為,;,
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若為數(shù)列的前項(xiàng)和. 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135603705206.gif" style="vertical-align:middle;" />的二次函數(shù)的最小值為,直線的圖像截得的弦長(zhǎng)為,數(shù)列滿足,設(shè)的最值及相應(yīng)的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

 若為等差數(shù)列的連續(xù)三項(xiàng),則的值為(  )                                
A.2047
B.1062
C.1023
D.531

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,公差,前項(xiàng)的和,則的值為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等差數(shù)列的前5項(xiàng)和,且,則
A.12  B.13C.14    D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案