【題目】設向量 =( sinx,sinx), =(cosx,sinx),x∈(0, ).
(1)若| |=| |,求x的值;
(2)設函數(shù)f(x)= ,求f(x)的最大值.

【答案】
(1)解:由|a|2=( sin x)2+(sin x)2=4sin2 x,

|b|2=(cos x)2+(sin x)2=1.

及|a|=|b|,得4sin2 x=1.

又x∈(0, ),

從而sin x= ,

∴x=


(2)解:f(x)= = sin xcos x+sin2x= sin 2x﹣ cos 2x+ =sin(2x﹣ )+ ,

當x= ∈(0, )時,sin(2x﹣ )取最大值1.

∴f(x)的最大值為


【解析】(1)根據(jù)| |=| |,建立方程關系,利用三角函數(shù)的公式即可求x的值(2)利用數(shù)量積的定義求出函數(shù)f(x)= 的表達式,利用三角函數(shù)的圖象和性質求f(x)的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若執(zhí)行如圖所示的程序框圖,輸出S的值為3,則判斷框中應填入的條件是(

A.k<6?
B.k<7?
C.k<8?
D.k<9?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,設a∈R,若關于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是(  )
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+2 sin2x+1﹣
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[ , ]時,若f(x)≥log2t恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某制瓶廠要制造一批軸截面如圖所示的瓶子,瓶子是按照統(tǒng)一規(guī)格設計的,瓶體上部為半球體,下部為圓柱體,并保持圓柱體的容積為.設圓柱體的底面半徑為x,圓柱體的高為h,瓶體的表面積為S.

(1)寫出S關于x的函數(shù)關系式;

(2)如何設計瓶子的尺寸(不考慮瓶壁的厚度),可以使表面積S最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+x2ax+1(a>1).

(1)求函數(shù)yf(x)在點(0,f(0))處的切線方程;

(2)a>1時,求函數(shù)yf(x)的單調區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣mlnx在[2,+∞)上單調遞增,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x| <0},N={x|x≤﹣1},則集合{x|x≥3}等于(
A.M∩N
B.M∪N
C.R(M∩N)
D.R(M∪N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)求曲線的普通方程和直線的傾斜角;

2)設點,直線和曲線交于兩點,求的值.

查看答案和解析>>

同步練習冊答案