精英家教網 > 高中數學 > 題目詳情
對于函數f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f()>[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數.
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數,并說明原因;
(2)若函數f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數,試求出實數a的取值范圍.
【答案】分析:(1)根據凸函數的定義,作差f()-[f(x1)+f(x2)]判斷即可;
(2)依題意,f()>[f(x1)+f(x2)]?,通過比較其真數的大小即可求得實數a的取值范圍.
解答:解:(1)f(x)不是其定義域上的凸函數.
f(x)的定義域為R,設x1≠x2,則
f()-[f(x1)+f(x2)]=a-(a-a)=-<0,…2分
∴f()<[f(x1)+f(x2)],…4分
∴f(x)不是其定義域上的凸函數…6分
(2)∵f(x)的定義域為(0,+∞),且f(x)在(0,+∞)內是凸函數,
∴f()>[f(x1)+f(x2)],…8分
(logax1+logax2)=①…10分
∵x1、x2∈(0,+∞),且x1≠x2
-x1x2=>0,即…12分
故要①成立,則a>1.
∴實數a的取值范圍是(1,+∞)…14分
點評:本題考查對數函數的單調性,考查作差法,著重考查推理證明的邏輯思維能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數.
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數,并說明原因;
(2)若函數f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數,試求出實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•奉賢區(qū)一模)若對于定義在R上的函數f(x),其圖象是連續(xù)不斷的,且存在常數λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數x都成立,則稱f(x)是一個“λ-伴隨函數”.有下列關于“λ-伴隨函數”的結論:
①f(x)=0是常數函數中唯一一個“λ-伴隨函數”;
②f(x)=x不是“λ-伴隨函數”;
③f(x)=x2是“λ-伴隨函數”;
④“
1
2
-伴隨函數”至少有一個零點.
其中正確結論的個數是( 。﹤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于函數f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(數學公式)>數學公式[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數.
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數,并說明原因;
(2)若函數f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數,試求出實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

對于函數f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數.
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數,并說明原因;
(2)若函數f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數,試求出實數a的取值范圍.

查看答案和解析>>

同步練習冊答案