設(shè)a為函數(shù)y=2x+arcsinx-
π
2
的最大值,則二項(xiàng)式(a
x
-
1
x
6的展開(kāi)式中含x2項(xiàng)的系數(shù)是
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,二項(xiàng)式定理
分析:由于函數(shù)y=2x+arcsinx-
π
2
在[-1,1]上單調(diào)遞增,即可得到最大值a,再由二項(xiàng)式的通項(xiàng)公式,化簡(jiǎn)整理,即可得到含x2項(xiàng)的系數(shù).
解答: 解:由于函數(shù)y=2x+arcsinx-
π
2
在[-1,1]上單調(diào)遞增,
則當(dāng)x=1時(shí),函數(shù)取最大值為2+
π
2
-
π
2
=2,
即a=2.
則二項(xiàng)式(2
x
-
1
x
6的通項(xiàng)公式:Tr+1=
C
r
6
(2
x
6-r(-
1
x
r
=
C
r
6
26-r•(-1)r
•x3-r,
令3-r=2,則r=1.
則含x2項(xiàng)的系數(shù)為:
C
1
6
25•(-1)1
=-192.
故答案為:-192.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性及運(yùn)用:求最值,考查二項(xiàng)式定理的運(yùn)用,主要是通項(xiàng)公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax-
1
a
(a>0,a≠1)的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:
an+an+2
2
≤an+1成立,則稱(chēng)數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱(chēng)上凸數(shù)列).現(xiàn)有數(shù)列{an}滿(mǎn)足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中b=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0且a+b=1.
求證:(1)
1
a
+
1
b
≥4
;
(2)
a+
1
2
+
b+
1
2
≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)“小康縣”的經(jīng)濟(jì)評(píng)價(jià)標(biāo)準(zhǔn):
①年人均收入不小于7000元;
②年人均食品支出不大于收入的35%.某縣有40萬(wàn)人,調(diào)查數(shù)據(jù)如下:
年人均收入/元0200040006000800010 00012 00016 000
人數(shù)/萬(wàn)人63556753
則該縣(  )
A、是小康縣
B、達(dá)到標(biāo)準(zhǔn)①,未達(dá)到標(biāo)準(zhǔn)②,不是小康縣
C、達(dá)到標(biāo)準(zhǔn)②,未達(dá)到標(biāo)準(zhǔn)①,不是小康縣
D、兩個(gè)標(biāo)準(zhǔn)都未達(dá)到,不是小康縣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
C
1
99
-4
C
2
99
+8
C
3
99
-16
C
4
99
+…+299
C
99
99
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
2
=1的頂點(diǎn)、焦點(diǎn)分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)、頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過(guò)橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x2-2ax+4在(-∞,2]上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=[x|-1≤x<2},B={x|x-a≤0},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、a≤2B、a≥-1
C、a>-1D、a≥2

查看答案和解析>>

同步練習(xí)冊(cè)答案